1 *> \brief \b ZLA_GERCOND_C
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZLA_GERCOND_C + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zla_gercond_c.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zla_gercond_c.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zla_gercond_c.f">
21 * DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF,
22 * LDAF, IPIV, C, CAPPLY,
25 * .. Scalar Aguments ..
28 * INTEGER N, LDA, LDAF, INFO
30 * .. Array Arguments ..
32 * COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
33 * DOUBLE PRECISION C( * ), RWORK( * )
39 *>\details \b Purpose:
42 *> ZLA_GERCOND_C computes the infinity norm condition number of
43 *> op(A) * inv(diag(C)) where C is a DOUBLE PRECISION vector.
52 *> TRANS is CHARACTER*1
53 *> Specifies the form of the system of equations:
54 *> = 'N': A * X = B (No transpose)
55 *> = 'T': A**T * X = B (Transpose)
56 *> = 'C': A**H * X = B (Conjugate Transpose = Transpose)
62 *> The number of linear equations, i.e., the order of the
68 *> A is COMPLEX*16 array, dimension (LDA,N)
69 *> On entry, the N-by-N matrix A
75 *> The leading dimension of the array A. LDA >= max(1,N).
80 *> AF is COMPLEX*16 array, dimension (LDAF,N)
81 *> The factors L and U from the factorization
82 *> A = P*L*U as computed by ZGETRF.
88 *> The leading dimension of the array AF. LDAF >= max(1,N).
93 *> IPIV is INTEGER array, dimension (N)
94 *> The pivot indices from the factorization A = P*L*U
95 *> as computed by ZGETRF; row i of the matrix was interchanged
101 *> C is DOUBLE PRECISION array, dimension (N)
102 *> The vector C in the formula op(A) * inv(diag(C)).
108 *> If .TRUE. then access the vector C in the formula above.
114 *> = 0: Successful exit.
115 *> i > 0: The ith argument is invalid.
120 *> WORK is COMPLEX*16 array, dimension (2*N).
126 *> RWORK is DOUBLE PRECISION array, dimension (N).
134 *> \author Univ. of Tennessee
135 *> \author Univ. of California Berkeley
136 *> \author Univ. of Colorado Denver
139 *> \date November 2011
141 *> \ingroup complex16GEcomputational
143 * =====================================================================
144 DOUBLE PRECISION FUNCTION ZLA_GERCOND_C( TRANS, N, A, LDA, AF,
145 $ LDAF, IPIV, C, CAPPLY,
146 $ INFO, WORK, RWORK )
148 * -- LAPACK computational routine (version 3.2.1) --
149 * -- LAPACK is a software package provided by Univ. of Tennessee, --
150 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
153 * .. Scalar Aguments ..
156 INTEGER N, LDA, LDAF, INFO
158 * .. Array Arguments ..
160 COMPLEX*16 A( LDA, * ), AF( LDAF, * ), WORK( * )
161 DOUBLE PRECISION C( * ), RWORK( * )
164 * =====================================================================
166 * .. Local Scalars ..
169 DOUBLE PRECISION AINVNM, ANORM, TMP
175 * .. External Functions ..
179 * .. External Subroutines ..
180 EXTERNAL ZLACN2, ZGETRS, XERBLA
182 * .. Intrinsic Functions ..
183 INTRINSIC ABS, MAX, REAL, DIMAG
185 * .. Statement Functions ..
186 DOUBLE PRECISION CABS1
188 * .. Statement Function Definitions ..
189 CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
191 * .. Executable Statements ..
192 ZLA_GERCOND_C = 0.0D+0
195 NOTRANS = LSAME( TRANS, 'N' )
196 IF ( .NOT. NOTRANS .AND. .NOT. LSAME( TRANS, 'T' ) .AND. .NOT.
197 $ LSAME( TRANS, 'C' ) ) THEN
198 ELSE IF( N.LT.0 ) THEN
202 CALL XERBLA( 'ZLA_GERCOND_C', -INFO )
206 * Compute norm of op(A)*op2(C).
214 TMP = TMP + CABS1( A( I, J ) ) / C( J )
218 TMP = TMP + CABS1( A( I, J ) )
222 ANORM = MAX( ANORM, TMP )
229 TMP = TMP + CABS1( A( J, I ) ) / C( J )
233 TMP = TMP + CABS1( A( J, I ) )
237 ANORM = MAX( ANORM, TMP )
241 * Quick return if possible.
244 ZLA_GERCOND_C = 1.0D+0
246 ELSE IF( ANORM .EQ. 0.0D+0 ) THEN
250 * Estimate the norm of inv(op(A)).
256 CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
263 WORK( I ) = WORK( I ) * RWORK( I )
267 CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
270 CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
274 * Multiply by inv(C).
278 WORK( I ) = WORK( I ) * C( I )
283 * Multiply by inv(C**H).
287 WORK( I ) = WORK( I ) * C( I )
292 CALL ZGETRS( 'Conjugate transpose', N, 1, AF, LDAF, IPIV,
295 CALL ZGETRS( 'No transpose', N, 1, AF, LDAF, IPIV,
302 WORK( I ) = WORK( I ) * RWORK( I )
308 * Compute the estimate of the reciprocal condition number.
310 IF( AINVNM .NE. 0.0D+0 )
311 $ ZLA_GERCOND_C = 1.0D+0 / AINVNM