3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZHPGST + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpgst.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpgst.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpgst.f">
21 * SUBROUTINE ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
23 * .. Scalar Arguments ..
25 * INTEGER INFO, ITYPE, N
27 * .. Array Arguments ..
28 * COMPLEX*16 AP( * ), BP( * )
37 *> ZHPGST reduces a complex Hermitian-definite generalized
38 *> eigenproblem to standard form, using packed storage.
40 *> If ITYPE = 1, the problem is A*x = lambda*B*x,
41 *> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
43 *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
44 *> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H*A*L.
46 *> B must have been previously factorized as U**H*U or L*L**H by ZPPTRF.
55 *> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
56 *> = 2 or 3: compute U*A*U**H or L**H*A*L.
61 *> UPLO is CHARACTER*1
62 *> = 'U': Upper triangle of A is stored and B is factored as
64 *> = 'L': Lower triangle of A is stored and B is factored as
71 *> The order of the matrices A and B. N >= 0.
76 *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
77 *> On entry, the upper or lower triangle of the Hermitian matrix
78 *> A, packed columnwise in a linear array. The j-th column of A
79 *> is stored in the array AP as follows:
80 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
81 *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
83 *> On exit, if INFO = 0, the transformed matrix, stored in the
89 *> BP is COMPLEX*16 array, dimension (N*(N+1)/2)
90 *> The triangular factor from the Cholesky factorization of B,
91 *> stored in the same format as A, as returned by ZPPTRF.
97 *> = 0: successful exit
98 *> < 0: if INFO = -i, the i-th argument had an illegal value
104 *> \author Univ. of Tennessee
105 *> \author Univ. of California Berkeley
106 *> \author Univ. of Colorado Denver
109 *> \date November 2011
111 *> \ingroup complex16OTHERcomputational
113 * =====================================================================
114 SUBROUTINE ZHPGST( ITYPE, UPLO, N, AP, BP, INFO )
116 * -- LAPACK computational routine (version 3.4.0) --
117 * -- LAPACK is a software package provided by Univ. of Tennessee, --
118 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
121 * .. Scalar Arguments ..
123 INTEGER INFO, ITYPE, N
125 * .. Array Arguments ..
126 COMPLEX*16 AP( * ), BP( * )
129 * =====================================================================
132 DOUBLE PRECISION ONE, HALF
133 PARAMETER ( ONE = 1.0D+0, HALF = 0.5D+0 )
135 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
137 * .. Local Scalars ..
139 INTEGER J, J1, J1J1, JJ, K, K1, K1K1, KK
140 DOUBLE PRECISION AJJ, AKK, BJJ, BKK
143 * .. External Subroutines ..
144 EXTERNAL XERBLA, ZAXPY, ZDSCAL, ZHPMV, ZHPR2, ZTPMV,
147 * .. Intrinsic Functions ..
150 * .. External Functions ..
153 EXTERNAL LSAME, ZDOTC
155 * .. Executable Statements ..
157 * Test the input parameters.
160 UPPER = LSAME( UPLO, 'U' )
161 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
163 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
165 ELSE IF( N.LT.0 ) THEN
169 CALL XERBLA( 'ZHPGST', -INFO )
173 IF( ITYPE.EQ.1 ) THEN
176 * Compute inv(U**H)*A*inv(U)
178 * J1 and JJ are the indices of A(1,j) and A(j,j)
185 * Compute the j-th column of the upper triangle of A
187 AP( JJ ) = DBLE( AP( JJ ) )
189 CALL ZTPSV( UPLO, 'Conjugate transpose', 'Non-unit', J,
191 CALL ZHPMV( UPLO, J-1, -CONE, AP, BP( J1 ), 1, CONE,
193 CALL ZDSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
194 AP( JJ ) = ( AP( JJ )-ZDOTC( J-1, AP( J1 ), 1, BP( J1 ),
199 * Compute inv(L)*A*inv(L**H)
201 * KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
205 K1K1 = KK + N - K + 1
207 * Update the lower triangle of A(k:n,k:n)
214 CALL ZDSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
216 CALL ZAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
217 CALL ZHPR2( UPLO, N-K, -CONE, AP( KK+1 ), 1,
218 $ BP( KK+1 ), 1, AP( K1K1 ) )
219 CALL ZAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
220 CALL ZTPSV( UPLO, 'No transpose', 'Non-unit', N-K,
221 $ BP( K1K1 ), AP( KK+1 ), 1 )
231 * K1 and KK are the indices of A(1,k) and A(k,k)
238 * Update the upper triangle of A(1:k,1:k)
242 CALL ZTPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
245 CALL ZAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
246 CALL ZHPR2( UPLO, K-1, CONE, AP( K1 ), 1, BP( K1 ), 1,
248 CALL ZAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
249 CALL ZDSCAL( K-1, BKK, AP( K1 ), 1 )
250 AP( KK ) = AKK*BKK**2
256 * JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
260 J1J1 = JJ + N - J + 1
262 * Compute the j-th column of the lower triangle of A
266 AP( JJ ) = AJJ*BJJ + ZDOTC( N-J, AP( JJ+1 ), 1,
268 CALL ZDSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
269 CALL ZHPMV( UPLO, N-J, CONE, AP( J1J1 ), BP( JJ+1 ), 1,
270 $ CONE, AP( JJ+1 ), 1 )
271 CALL ZTPMV( UPLO, 'Conjugate transpose', 'Non-unit',
272 $ N-J+1, BP( JJ ), AP( JJ ), 1 )