1 *> \brief <b> ZHPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZHPEVX + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevx.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevx.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevx.f">
21 * SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
22 * ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
25 * .. Scalar Arguments ..
26 * CHARACTER JOBZ, RANGE, UPLO
27 * INTEGER IL, INFO, IU, LDZ, M, N
28 * DOUBLE PRECISION ABSTOL, VL, VU
30 * .. Array Arguments ..
31 * INTEGER IFAIL( * ), IWORK( * )
32 * DOUBLE PRECISION RWORK( * ), W( * )
33 * COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
42 *> ZHPEVX computes selected eigenvalues and, optionally, eigenvectors
43 *> of a complex Hermitian matrix A in packed storage.
44 *> Eigenvalues/vectors can be selected by specifying either a range of
45 *> values or a range of indices for the desired eigenvalues.
53 *> JOBZ is CHARACTER*1
54 *> = 'N': Compute eigenvalues only;
55 *> = 'V': Compute eigenvalues and eigenvectors.
60 *> RANGE is CHARACTER*1
61 *> = 'A': all eigenvalues will be found;
62 *> = 'V': all eigenvalues in the half-open interval (VL,VU]
64 *> = 'I': the IL-th through IU-th eigenvalues will be found.
69 *> UPLO is CHARACTER*1
70 *> = 'U': Upper triangle of A is stored;
71 *> = 'L': Lower triangle of A is stored.
77 *> The order of the matrix A. N >= 0.
82 *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
83 *> On entry, the upper or lower triangle of the Hermitian matrix
84 *> A, packed columnwise in a linear array. The j-th column of A
85 *> is stored in the array AP as follows:
86 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
87 *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
89 *> On exit, AP is overwritten by values generated during the
90 *> reduction to tridiagonal form. If UPLO = 'U', the diagonal
91 *> and first superdiagonal of the tridiagonal matrix T overwrite
92 *> the corresponding elements of A, and if UPLO = 'L', the
93 *> diagonal and first subdiagonal of T overwrite the
94 *> corresponding elements of A.
99 *> VL is DOUBLE PRECISION
100 *> If RANGE='V', the lower bound of the interval to
101 *> be searched for eigenvalues. VL < VU.
102 *> Not referenced if RANGE = 'A' or 'I'.
107 *> VU is DOUBLE PRECISION
108 *> If RANGE='V', the upper bound of the interval to
109 *> be searched for eigenvalues. VL < VU.
110 *> Not referenced if RANGE = 'A' or 'I'.
116 *> If RANGE='I', the index of the
117 *> smallest eigenvalue to be returned.
118 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
119 *> Not referenced if RANGE = 'A' or 'V'.
125 *> If RANGE='I', the index of the
126 *> largest eigenvalue to be returned.
127 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
128 *> Not referenced if RANGE = 'A' or 'V'.
133 *> ABSTOL is DOUBLE PRECISION
134 *> The absolute error tolerance for the eigenvalues.
135 *> An approximate eigenvalue is accepted as converged
136 *> when it is determined to lie in an interval [a,b]
137 *> of width less than or equal to
139 *> ABSTOL + EPS * max( |a|,|b| ) ,
141 *> where EPS is the machine precision. If ABSTOL is less than
142 *> or equal to zero, then EPS*|T| will be used in its place,
143 *> where |T| is the 1-norm of the tridiagonal matrix obtained
144 *> by reducing AP to tridiagonal form.
146 *> Eigenvalues will be computed most accurately when ABSTOL is
147 *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
148 *> If this routine returns with INFO>0, indicating that some
149 *> eigenvectors did not converge, try setting ABSTOL to
152 *> See "Computing Small Singular Values of Bidiagonal Matrices
153 *> with Guaranteed High Relative Accuracy," by Demmel and
154 *> Kahan, LAPACK Working Note #3.
160 *> The total number of eigenvalues found. 0 <= M <= N.
161 *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
166 *> W is DOUBLE PRECISION array, dimension (N)
167 *> If INFO = 0, the selected eigenvalues in ascending order.
172 *> Z is COMPLEX*16 array, dimension (LDZ, max(1,M))
173 *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
174 *> contain the orthonormal eigenvectors of the matrix A
175 *> corresponding to the selected eigenvalues, with the i-th
176 *> column of Z holding the eigenvector associated with W(i).
177 *> If an eigenvector fails to converge, then that column of Z
178 *> contains the latest approximation to the eigenvector, and
179 *> the index of the eigenvector is returned in IFAIL.
180 *> If JOBZ = 'N', then Z is not referenced.
181 *> Note: the user must ensure that at least max(1,M) columns are
182 *> supplied in the array Z; if RANGE = 'V', the exact value of M
183 *> is not known in advance and an upper bound must be used.
189 *> The leading dimension of the array Z. LDZ >= 1, and if
190 *> JOBZ = 'V', LDZ >= max(1,N).
195 *> WORK is COMPLEX*16 array, dimension (2*N)
200 *> RWORK is DOUBLE PRECISION array, dimension (7*N)
205 *> IWORK is INTEGER array, dimension (5*N)
210 *> IFAIL is INTEGER array, dimension (N)
211 *> If JOBZ = 'V', then if INFO = 0, the first M elements of
212 *> IFAIL are zero. If INFO > 0, then IFAIL contains the
213 *> indices of the eigenvectors that failed to converge.
214 *> If JOBZ = 'N', then IFAIL is not referenced.
220 *> = 0: successful exit
221 *> < 0: if INFO = -i, the i-th argument had an illegal value
222 *> > 0: if INFO = i, then i eigenvectors failed to converge.
223 *> Their indices are stored in array IFAIL.
229 *> \author Univ. of Tennessee
230 *> \author Univ. of California Berkeley
231 *> \author Univ. of Colorado Denver
236 *> \ingroup complex16OTHEReigen
238 * =====================================================================
239 SUBROUTINE ZHPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
240 $ ABSTOL, M, W, Z, LDZ, WORK, RWORK, IWORK,
243 * -- LAPACK driver routine (version 3.6.1) --
244 * -- LAPACK is a software package provided by Univ. of Tennessee, --
245 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
248 * .. Scalar Arguments ..
249 CHARACTER JOBZ, RANGE, UPLO
250 INTEGER IL, INFO, IU, LDZ, M, N
251 DOUBLE PRECISION ABSTOL, VL, VU
253 * .. Array Arguments ..
254 INTEGER IFAIL( * ), IWORK( * )
255 DOUBLE PRECISION RWORK( * ), W( * )
256 COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
259 * =====================================================================
262 DOUBLE PRECISION ZERO, ONE
263 PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
265 PARAMETER ( CONE = ( 1.0D0, 0.0D0 ) )
267 * .. Local Scalars ..
268 LOGICAL ALLEIG, INDEIG, TEST, VALEIG, WANTZ
270 INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
271 $ INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
272 $ ITMP1, J, JJ, NSPLIT
273 DOUBLE PRECISION ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
274 $ SIGMA, SMLNUM, TMP1, VLL, VUU
276 * .. External Functions ..
278 DOUBLE PRECISION DLAMCH, ZLANHP
279 EXTERNAL LSAME, DLAMCH, ZLANHP
281 * .. External Subroutines ..
282 EXTERNAL DCOPY, DSCAL, DSTEBZ, DSTERF, XERBLA, ZDSCAL,
283 $ ZHPTRD, ZSTEIN, ZSTEQR, ZSWAP, ZUPGTR, ZUPMTR
285 * .. Intrinsic Functions ..
286 INTRINSIC DBLE, MAX, MIN, SQRT
288 * .. Executable Statements ..
290 * Test the input parameters.
292 WANTZ = LSAME( JOBZ, 'V' )
293 ALLEIG = LSAME( RANGE, 'A' )
294 VALEIG = LSAME( RANGE, 'V' )
295 INDEIG = LSAME( RANGE, 'I' )
298 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
300 ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
302 ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
305 ELSE IF( N.LT.0 ) THEN
309 IF( N.GT.0 .AND. VU.LE.VL )
311 ELSE IF( INDEIG ) THEN
312 IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
314 ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
320 IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
325 CALL XERBLA( 'ZHPEVX', -INFO )
329 * Quick return if possible
336 IF( ALLEIG .OR. INDEIG ) THEN
340 IF( VL.LT.DBLE( AP( 1 ) ) .AND. VU.GE.DBLE( AP( 1 ) ) ) THEN
350 * Get machine constants.
352 SAFMIN = DLAMCH( 'Safe minimum' )
353 EPS = DLAMCH( 'Precision' )
354 SMLNUM = SAFMIN / EPS
355 BIGNUM = ONE / SMLNUM
356 RMIN = SQRT( SMLNUM )
357 RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
359 * Scale matrix to allowable range, if necessary.
370 ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
371 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
374 ELSE IF( ANRM.GT.RMAX ) THEN
378 IF( ISCALE.EQ.1 ) THEN
379 CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
381 $ ABSTLL = ABSTOL*SIGMA
388 * Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
395 CALL ZHPTRD( UPLO, N, AP, RWORK( INDD ), RWORK( INDE ),
396 $ WORK( INDTAU ), IINFO )
398 * If all eigenvalues are desired and ABSTOL is less than or equal
399 * to zero, then call DSTERF or ZUPGTR and ZSTEQR. If this fails
400 * for some eigenvalue, then try DSTEBZ.
404 IF (IL.EQ.1 .AND. IU.EQ.N) THEN
408 IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
409 CALL DCOPY( N, RWORK( INDD ), 1, W, 1 )
411 IF( .NOT.WANTZ ) THEN
412 CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
413 CALL DSTERF( N, W, RWORK( INDEE ), INFO )
415 CALL ZUPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
416 $ WORK( INDWRK ), IINFO )
417 CALL DCOPY( N-1, RWORK( INDE ), 1, RWORK( INDEE ), 1 )
418 CALL ZSTEQR( JOBZ, N, W, RWORK( INDEE ), Z, LDZ,
419 $ RWORK( INDRWK ), INFO )
433 * Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN.
443 CALL DSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
444 $ RWORK( INDD ), RWORK( INDE ), M, NSPLIT, W,
445 $ IWORK( INDIBL ), IWORK( INDISP ), RWORK( INDRWK ),
446 $ IWORK( INDIWK ), INFO )
449 CALL ZSTEIN( N, RWORK( INDD ), RWORK( INDE ), M, W,
450 $ IWORK( INDIBL ), IWORK( INDISP ), Z, LDZ,
451 $ RWORK( INDRWK ), IWORK( INDIWK ), IFAIL, INFO )
453 * Apply unitary matrix used in reduction to tridiagonal
454 * form to eigenvectors returned by ZSTEIN.
457 CALL ZUPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
458 $ WORK( INDWRK ), IINFO )
461 * If matrix was scaled, then rescale eigenvalues appropriately.
464 IF( ISCALE.EQ.1 ) THEN
470 CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )
473 * If eigenvalues are not in order, then sort them, along with
481 IF( W( JJ ).LT.TMP1 ) THEN
488 ITMP1 = IWORK( INDIBL+I-1 )
490 IWORK( INDIBL+I-1 ) = IWORK( INDIBL+J-1 )
492 IWORK( INDIBL+J-1 ) = ITMP1
493 CALL ZSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
496 IFAIL( I ) = IFAIL( J )