1 *> \brief <b> ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZHPEVD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpevd.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpevd.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpevd.f">
21 * SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
22 * RWORK, LRWORK, IWORK, LIWORK, INFO )
24 * .. Scalar Arguments ..
25 * CHARACTER JOBZ, UPLO
26 * INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
28 * .. Array Arguments ..
30 * DOUBLE PRECISION RWORK( * ), W( * )
31 * COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
40 *> ZHPEVD computes all the eigenvalues and, optionally, eigenvectors of
41 *> a complex Hermitian matrix A in packed storage. If eigenvectors are
42 *> desired, it uses a divide and conquer algorithm.
44 *> The divide and conquer algorithm makes very mild assumptions about
45 *> floating point arithmetic. It will work on machines with a guard
46 *> digit in add/subtract, or on those binary machines without guard
47 *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
48 *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
49 *> without guard digits, but we know of none.
57 *> JOBZ is CHARACTER*1
58 *> = 'N': Compute eigenvalues only;
59 *> = 'V': Compute eigenvalues and eigenvectors.
64 *> UPLO is CHARACTER*1
65 *> = 'U': Upper triangle of A is stored;
66 *> = 'L': Lower triangle of A is stored.
72 *> The order of the matrix A. N >= 0.
77 *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
78 *> On entry, the upper or lower triangle of the Hermitian matrix
79 *> A, packed columnwise in a linear array. The j-th column of A
80 *> is stored in the array AP as follows:
81 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
82 *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
84 *> On exit, AP is overwritten by values generated during the
85 *> reduction to tridiagonal form. If UPLO = 'U', the diagonal
86 *> and first superdiagonal of the tridiagonal matrix T overwrite
87 *> the corresponding elements of A, and if UPLO = 'L', the
88 *> diagonal and first subdiagonal of T overwrite the
89 *> corresponding elements of A.
94 *> W is DOUBLE PRECISION array, dimension (N)
95 *> If INFO = 0, the eigenvalues in ascending order.
100 *> Z is COMPLEX*16 array, dimension (LDZ, N)
101 *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
102 *> eigenvectors of the matrix A, with the i-th column of Z
103 *> holding the eigenvector associated with W(i).
104 *> If JOBZ = 'N', then Z is not referenced.
110 *> The leading dimension of the array Z. LDZ >= 1, and if
111 *> JOBZ = 'V', LDZ >= max(1,N).
116 *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
117 *> On exit, if INFO = 0, WORK(1) returns the required LWORK.
123 *> The dimension of array WORK.
124 *> If N <= 1, LWORK must be at least 1.
125 *> If JOBZ = 'N' and N > 1, LWORK must be at least N.
126 *> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N.
128 *> If LWORK = -1, then a workspace query is assumed; the routine
129 *> only calculates the required sizes of the WORK, RWORK and
130 *> IWORK arrays, returns these values as the first entries of
131 *> the WORK, RWORK and IWORK arrays, and no error message
132 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
137 *> RWORK is DOUBLE PRECISION array,
138 *> dimension (LRWORK)
139 *> On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
145 *> The dimension of array RWORK.
146 *> If N <= 1, LRWORK must be at least 1.
147 *> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
148 *> If JOBZ = 'V' and N > 1, LRWORK must be at least
151 *> If LRWORK = -1, then a workspace query is assumed; the
152 *> routine only calculates the required sizes of the WORK, RWORK
153 *> and IWORK arrays, returns these values as the first entries
154 *> of the WORK, RWORK and IWORK arrays, and no error message
155 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
160 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
161 *> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
167 *> The dimension of array IWORK.
168 *> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
169 *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
171 *> If LIWORK = -1, then a workspace query is assumed; the
172 *> routine only calculates the required sizes of the WORK, RWORK
173 *> and IWORK arrays, returns these values as the first entries
174 *> of the WORK, RWORK and IWORK arrays, and no error message
175 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
181 *> = 0: successful exit
182 *> < 0: if INFO = -i, the i-th argument had an illegal value.
183 *> > 0: if INFO = i, the algorithm failed to converge; i
184 *> off-diagonal elements of an intermediate tridiagonal
185 *> form did not converge to zero.
191 *> \author Univ. of Tennessee
192 *> \author Univ. of California Berkeley
193 *> \author Univ. of Colorado Denver
196 *> \date November 2011
198 *> \ingroup complex16OTHEReigen
200 * =====================================================================
201 SUBROUTINE ZHPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
202 $ RWORK, LRWORK, IWORK, LIWORK, INFO )
204 * -- LAPACK driver routine (version 3.4.0) --
205 * -- LAPACK is a software package provided by Univ. of Tennessee, --
206 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
209 * .. Scalar Arguments ..
211 INTEGER INFO, LDZ, LIWORK, LRWORK, LWORK, N
213 * .. Array Arguments ..
215 DOUBLE PRECISION RWORK( * ), W( * )
216 COMPLEX*16 AP( * ), WORK( * ), Z( LDZ, * )
219 * =====================================================================
222 DOUBLE PRECISION ZERO, ONE
223 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
225 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
227 * .. Local Scalars ..
228 LOGICAL LQUERY, WANTZ
229 INTEGER IINFO, IMAX, INDE, INDRWK, INDTAU, INDWRK,
230 $ ISCALE, LIWMIN, LLRWK, LLWRK, LRWMIN, LWMIN
231 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
234 * .. External Functions ..
236 DOUBLE PRECISION DLAMCH, ZLANHP
237 EXTERNAL LSAME, DLAMCH, ZLANHP
239 * .. External Subroutines ..
240 EXTERNAL DSCAL, DSTERF, XERBLA, ZDSCAL, ZHPTRD, ZSTEDC,
243 * .. Intrinsic Functions ..
246 * .. Executable Statements ..
248 * Test the input parameters.
250 WANTZ = LSAME( JOBZ, 'V' )
251 LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
254 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
256 ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
259 ELSE IF( N.LT.0 ) THEN
261 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
273 LRWMIN = 1 + 5*N + 2*N**2
285 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
287 ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
289 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
295 CALL XERBLA( 'ZHPEVD', -INFO )
297 ELSE IF( LQUERY ) THEN
301 * Quick return if possible
313 * Get machine constants.
315 SAFMIN = DLAMCH( 'Safe minimum' )
316 EPS = DLAMCH( 'Precision' )
317 SMLNUM = SAFMIN / EPS
318 BIGNUM = ONE / SMLNUM
319 RMIN = SQRT( SMLNUM )
320 RMAX = SQRT( BIGNUM )
322 * Scale matrix to allowable range, if necessary.
324 ANRM = ZLANHP( 'M', UPLO, N, AP, RWORK )
326 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
329 ELSE IF( ANRM.GT.RMAX ) THEN
333 IF( ISCALE.EQ.1 ) THEN
334 CALL ZDSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
337 * Call ZHPTRD to reduce Hermitian packed matrix to tridiagonal form.
343 LLWRK = LWORK - INDWRK + 1
344 LLRWK = LRWORK - INDRWK + 1
345 CALL ZHPTRD( UPLO, N, AP, W, RWORK( INDE ), WORK( INDTAU ),
348 * For eigenvalues only, call DSTERF. For eigenvectors, first call
349 * ZUPGTR to generate the orthogonal matrix, then call ZSTEDC.
351 IF( .NOT.WANTZ ) THEN
352 CALL DSTERF( N, W, RWORK( INDE ), INFO )
354 CALL ZSTEDC( 'I', N, W, RWORK( INDE ), Z, LDZ, WORK( INDWRK ),
355 $ LLWRK, RWORK( INDRWK ), LLRWK, IWORK, LIWORK,
357 CALL ZUPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
358 $ WORK( INDWRK ), IINFO )
361 * If matrix was scaled, then rescale eigenvalues appropriately.
363 IF( ISCALE.EQ.1 ) THEN
369 CALL DSCAL( IMAX, ONE / SIGMA, W, 1 )