3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZHEGVD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegvd.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegvd.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegvd.f">
21 * SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
22 * LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
24 * .. Scalar Arguments ..
25 * CHARACTER JOBZ, UPLO
26 * INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
28 * .. Array Arguments ..
30 * DOUBLE PRECISION RWORK( * ), W( * )
31 * COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
40 *> ZHEGVD computes all the eigenvalues, and optionally, the eigenvectors
41 *> of a complex generalized Hermitian-definite eigenproblem, of the form
42 *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
43 *> B are assumed to be Hermitian and B is also positive definite.
44 *> If eigenvectors are desired, it uses a divide and conquer algorithm.
46 *> The divide and conquer algorithm makes very mild assumptions about
47 *> floating point arithmetic. It will work on machines with a guard
48 *> digit in add/subtract, or on those binary machines without guard
49 *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
50 *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
51 *> without guard digits, but we know of none.
60 *> Specifies the problem type to be solved:
61 *> = 1: A*x = (lambda)*B*x
62 *> = 2: A*B*x = (lambda)*x
63 *> = 3: B*A*x = (lambda)*x
68 *> JOBZ is CHARACTER*1
69 *> = 'N': Compute eigenvalues only;
70 *> = 'V': Compute eigenvalues and eigenvectors.
75 *> UPLO is CHARACTER*1
76 *> = 'U': Upper triangles of A and B are stored;
77 *> = 'L': Lower triangles of A and B are stored.
83 *> The order of the matrices A and B. N >= 0.
88 *> A is COMPLEX*16 array, dimension (LDA, N)
89 *> On entry, the Hermitian matrix A. If UPLO = 'U', the
90 *> leading N-by-N upper triangular part of A contains the
91 *> upper triangular part of the matrix A. If UPLO = 'L',
92 *> the leading N-by-N lower triangular part of A contains
93 *> the lower triangular part of the matrix A.
95 *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
96 *> matrix Z of eigenvectors. The eigenvectors are normalized
98 *> if ITYPE = 1 or 2, Z**H*B*Z = I;
99 *> if ITYPE = 3, Z**H*inv(B)*Z = I.
100 *> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
101 *> or the lower triangle (if UPLO='L') of A, including the
102 *> diagonal, is destroyed.
108 *> The leading dimension of the array A. LDA >= max(1,N).
113 *> B is COMPLEX*16 array, dimension (LDB, N)
114 *> On entry, the Hermitian matrix B. If UPLO = 'U', the
115 *> leading N-by-N upper triangular part of B contains the
116 *> upper triangular part of the matrix B. If UPLO = 'L',
117 *> the leading N-by-N lower triangular part of B contains
118 *> the lower triangular part of the matrix B.
120 *> On exit, if INFO <= N, the part of B containing the matrix is
121 *> overwritten by the triangular factor U or L from the Cholesky
122 *> factorization B = U**H*U or B = L*L**H.
128 *> The leading dimension of the array B. LDB >= max(1,N).
133 *> W is DOUBLE PRECISION array, dimension (N)
134 *> If INFO = 0, the eigenvalues in ascending order.
139 *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
140 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
146 *> The length of the array WORK.
147 *> If N <= 1, LWORK >= 1.
148 *> If JOBZ = 'N' and N > 1, LWORK >= N + 1.
149 *> If JOBZ = 'V' and N > 1, LWORK >= 2*N + N**2.
151 *> If LWORK = -1, then a workspace query is assumed; the routine
152 *> only calculates the optimal sizes of the WORK, RWORK and
153 *> IWORK arrays, returns these values as the first entries of
154 *> the WORK, RWORK and IWORK arrays, and no error message
155 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
160 *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
161 *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
167 *> The dimension of the array RWORK.
168 *> If N <= 1, LRWORK >= 1.
169 *> If JOBZ = 'N' and N > 1, LRWORK >= N.
170 *> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
172 *> If LRWORK = -1, then a workspace query is assumed; the
173 *> routine only calculates the optimal sizes of the WORK, RWORK
174 *> and IWORK arrays, returns these values as the first entries
175 *> of the WORK, RWORK and IWORK arrays, and no error message
176 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
181 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
182 *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
188 *> The dimension of the array IWORK.
189 *> If N <= 1, LIWORK >= 1.
190 *> If JOBZ = 'N' and N > 1, LIWORK >= 1.
191 *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
193 *> If LIWORK = -1, then a workspace query is assumed; the
194 *> routine only calculates the optimal sizes of the WORK, RWORK
195 *> and IWORK arrays, returns these values as the first entries
196 *> of the WORK, RWORK and IWORK arrays, and no error message
197 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
203 *> = 0: successful exit
204 *> < 0: if INFO = -i, the i-th argument had an illegal value
205 *> > 0: ZPOTRF or ZHEEVD returned an error code:
206 *> <= N: if INFO = i and JOBZ = 'N', then the algorithm
207 *> failed to converge; i off-diagonal elements of an
208 *> intermediate tridiagonal form did not converge to
210 *> if INFO = i and JOBZ = 'V', then the algorithm
211 *> failed to compute an eigenvalue while working on
212 *> the submatrix lying in rows and columns INFO/(N+1)
213 *> through mod(INFO,N+1);
214 *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
215 *> minor of order i of B is not positive definite.
216 *> The factorization of B could not be completed and
217 *> no eigenvalues or eigenvectors were computed.
223 *> \author Univ. of Tennessee
224 *> \author Univ. of California Berkeley
225 *> \author Univ. of Colorado Denver
228 *> \date November 2015
230 *> \ingroup complex16HEeigen
232 *> \par Further Details:
233 * =====================
237 *> Modified so that no backsubstitution is performed if ZHEEVD fails to
238 *> converge (NEIG in old code could be greater than N causing out of
239 *> bounds reference to A - reported by Ralf Meyer). Also corrected the
240 *> description of INFO and the test on ITYPE. Sven, 16 Feb 05.
243 *> \par Contributors:
246 *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
248 * =====================================================================
249 SUBROUTINE ZHEGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
250 $ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
252 * -- LAPACK driver routine (version 3.6.0) --
253 * -- LAPACK is a software package provided by Univ. of Tennessee, --
254 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
257 * .. Scalar Arguments ..
259 INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LRWORK, LWORK, N
261 * .. Array Arguments ..
263 DOUBLE PRECISION RWORK( * ), W( * )
264 COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * )
267 * =====================================================================
271 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
273 * .. Local Scalars ..
274 LOGICAL LQUERY, UPPER, WANTZ
276 INTEGER LIOPT, LIWMIN, LOPT, LROPT, LRWMIN, LWMIN
278 * .. External Functions ..
282 * .. External Subroutines ..
283 EXTERNAL XERBLA, ZHEEVD, ZHEGST, ZPOTRF, ZTRMM, ZTRSM
285 * .. Intrinsic Functions ..
288 * .. Executable Statements ..
290 * Test the input parameters.
292 WANTZ = LSAME( JOBZ, 'V' )
293 UPPER = LSAME( UPLO, 'U' )
294 LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
301 ELSE IF( WANTZ ) THEN
303 LRWMIN = 1 + 5*N + 2*N*N
313 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
315 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
317 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
319 ELSE IF( N.LT.0 ) THEN
321 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
323 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
332 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
334 ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
336 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
342 CALL XERBLA( 'ZHEGVD', -INFO )
344 ELSE IF( LQUERY ) THEN
348 * Quick return if possible
353 * Form a Cholesky factorization of B.
355 CALL ZPOTRF( UPLO, N, B, LDB, INFO )
361 * Transform problem to standard eigenvalue problem and solve.
363 CALL ZHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
364 CALL ZHEEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK, LRWORK,
365 $ IWORK, LIWORK, INFO )
366 LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
367 LROPT = MAX( DBLE( LROPT ), DBLE( RWORK( 1 ) ) )
368 LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
370 IF( WANTZ .AND. INFO.EQ.0 ) THEN
372 * Backtransform eigenvectors to the original problem.
374 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
376 * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
377 * backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
385 CALL ZTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,
388 ELSE IF( ITYPE.EQ.3 ) THEN
390 * For B*A*x=(lambda)*x;
391 * backtransform eigenvectors: x = L*y or U**H *y
399 CALL ZTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, CONE,