3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZHBGVD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbgvd.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbgvd.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbgvd.f">
21 * SUBROUTINE ZHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
22 * Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
25 * .. Scalar Arguments ..
26 * CHARACTER JOBZ, UPLO
27 * INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
30 * .. Array Arguments ..
32 * DOUBLE PRECISION RWORK( * ), W( * )
33 * COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
43 *> ZHBGVD computes all the eigenvalues, and optionally, the eigenvectors
44 *> of a complex generalized Hermitian-definite banded eigenproblem, of
45 *> the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian
46 *> and banded, and B is also positive definite. If eigenvectors are
47 *> desired, it uses a divide and conquer algorithm.
49 *> The divide and conquer algorithm makes very mild assumptions about
50 *> floating point arithmetic. It will work on machines with a guard
51 *> digit in add/subtract, or on those binary machines without guard
52 *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
53 *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
54 *> without guard digits, but we know of none.
62 *> JOBZ is CHARACTER*1
63 *> = 'N': Compute eigenvalues only;
64 *> = 'V': Compute eigenvalues and eigenvectors.
69 *> UPLO is CHARACTER*1
70 *> = 'U': Upper triangles of A and B are stored;
71 *> = 'L': Lower triangles of A and B are stored.
77 *> The order of the matrices A and B. N >= 0.
83 *> The number of superdiagonals of the matrix A if UPLO = 'U',
84 *> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
90 *> The number of superdiagonals of the matrix B if UPLO = 'U',
91 *> or the number of subdiagonals if UPLO = 'L'. KB >= 0.
96 *> AB is COMPLEX*16 array, dimension (LDAB, N)
97 *> On entry, the upper or lower triangle of the Hermitian band
98 *> matrix A, stored in the first ka+1 rows of the array. The
99 *> j-th column of A is stored in the j-th column of the array AB
101 *> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
102 *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
104 *> On exit, the contents of AB are destroyed.
110 *> The leading dimension of the array AB. LDAB >= KA+1.
115 *> BB is COMPLEX*16 array, dimension (LDBB, N)
116 *> On entry, the upper or lower triangle of the Hermitian band
117 *> matrix B, stored in the first kb+1 rows of the array. The
118 *> j-th column of B is stored in the j-th column of the array BB
120 *> if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j;
121 *> if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb).
123 *> On exit, the factor S from the split Cholesky factorization
124 *> B = S**H*S, as returned by ZPBSTF.
130 *> The leading dimension of the array BB. LDBB >= KB+1.
135 *> W is DOUBLE PRECISION array, dimension (N)
136 *> If INFO = 0, the eigenvalues in ascending order.
141 *> Z is COMPLEX*16 array, dimension (LDZ, N)
142 *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
143 *> eigenvectors, with the i-th column of Z holding the
144 *> eigenvector associated with W(i). The eigenvectors are
145 *> normalized so that Z**H*B*Z = I.
146 *> If JOBZ = 'N', then Z is not referenced.
152 *> The leading dimension of the array Z. LDZ >= 1, and if
153 *> JOBZ = 'V', LDZ >= N.
158 *> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
159 *> On exit, if INFO=0, WORK(1) returns the optimal LWORK.
165 *> The dimension of the array WORK.
166 *> If N <= 1, LWORK >= 1.
167 *> If JOBZ = 'N' and N > 1, LWORK >= N.
168 *> If JOBZ = 'V' and N > 1, LWORK >= 2*N**2.
170 *> If LWORK = -1, then a workspace query is assumed; the routine
171 *> only calculates the optimal sizes of the WORK, RWORK and
172 *> IWORK arrays, returns these values as the first entries of
173 *> the WORK, RWORK and IWORK arrays, and no error message
174 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
179 *> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
180 *> On exit, if INFO=0, RWORK(1) returns the optimal LRWORK.
186 *> The dimension of array RWORK.
187 *> If N <= 1, LRWORK >= 1.
188 *> If JOBZ = 'N' and N > 1, LRWORK >= N.
189 *> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
191 *> If LRWORK = -1, then a workspace query is assumed; the
192 *> routine only calculates the optimal sizes of the WORK, RWORK
193 *> and IWORK arrays, returns these values as the first entries
194 *> of the WORK, RWORK and IWORK arrays, and no error message
195 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
200 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
201 *> On exit, if INFO=0, IWORK(1) returns the optimal LIWORK.
207 *> The dimension of array IWORK.
208 *> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
209 *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
211 *> If LIWORK = -1, then a workspace query is assumed; the
212 *> routine only calculates the optimal sizes of the WORK, RWORK
213 *> and IWORK arrays, returns these values as the first entries
214 *> of the WORK, RWORK and IWORK arrays, and no error message
215 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
221 *> = 0: successful exit
222 *> < 0: if INFO = -i, the i-th argument had an illegal value
223 *> > 0: if INFO = i, and i is:
224 *> <= N: the algorithm failed to converge:
225 *> i off-diagonal elements of an intermediate
226 *> tridiagonal form did not converge to zero;
227 *> > N: if INFO = N + i, for 1 <= i <= N, then ZPBSTF
228 *> returned INFO = i: B is not positive definite.
229 *> The factorization of B could not be completed and
230 *> no eigenvalues or eigenvectors were computed.
236 *> \author Univ. of Tennessee
237 *> \author Univ. of California Berkeley
238 *> \author Univ. of Colorado Denver
243 *> \ingroup complex16OTHEReigen
245 *> \par Contributors:
248 *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
250 * =====================================================================
251 SUBROUTINE ZHBGVD( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W,
252 $ Z, LDZ, WORK, LWORK, RWORK, LRWORK, IWORK,
255 * -- LAPACK driver routine (version 3.6.1) --
256 * -- LAPACK is a software package provided by Univ. of Tennessee, --
257 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
260 * .. Scalar Arguments ..
262 INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, LIWORK, LRWORK,
265 * .. Array Arguments ..
267 DOUBLE PRECISION RWORK( * ), W( * )
268 COMPLEX*16 AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
272 * =====================================================================
275 COMPLEX*16 CONE, CZERO
276 PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
277 $ CZERO = ( 0.0D+0, 0.0D+0 ) )
279 * .. Local Scalars ..
280 LOGICAL LQUERY, UPPER, WANTZ
282 INTEGER IINFO, INDE, INDWK2, INDWRK, LIWMIN, LLRWK,
283 $ LLWK2, LRWMIN, LWMIN
285 * .. External Functions ..
289 * .. External Subroutines ..
290 EXTERNAL DSTERF, XERBLA, ZGEMM, ZHBGST, ZHBTRD, ZLACPY,
293 * .. Executable Statements ..
295 * Test the input parameters.
297 WANTZ = LSAME( JOBZ, 'V' )
298 UPPER = LSAME( UPLO, 'U' )
299 LQUERY = ( LWORK.EQ.-1 .OR. LRWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
306 ELSE IF( WANTZ ) THEN
308 LRWMIN = 1 + 5*N + 2*N**2
315 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
317 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
319 ELSE IF( N.LT.0 ) THEN
321 ELSE IF( KA.LT.0 ) THEN
323 ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
325 ELSE IF( LDAB.LT.KA+1 ) THEN
327 ELSE IF( LDBB.LT.KB+1 ) THEN
329 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
338 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
340 ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
342 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
348 CALL XERBLA( 'ZHBGVD', -INFO )
350 ELSE IF( LQUERY ) THEN
354 * Quick return if possible
359 * Form a split Cholesky factorization of B.
361 CALL ZPBSTF( UPLO, N, KB, BB, LDBB, INFO )
367 * Transform problem to standard eigenvalue problem.
372 LLWK2 = LWORK - INDWK2 + 2
373 LLRWK = LRWORK - INDWRK + 2
374 CALL ZHBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ,
375 $ WORK, RWORK, IINFO )
377 * Reduce Hermitian band matrix to tridiagonal form.
384 CALL ZHBTRD( VECT, UPLO, N, KA, AB, LDAB, W, RWORK( INDE ), Z,
387 * For eigenvalues only, call DSTERF. For eigenvectors, call ZSTEDC.
389 IF( .NOT.WANTZ ) THEN
390 CALL DSTERF( N, W, RWORK( INDE ), INFO )
392 CALL ZSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
393 $ LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
395 CALL ZGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
396 $ WORK( INDWK2 ), N )
397 CALL ZLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )