1 *> \brief \b ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download ZGELQ2 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelq2.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelq2.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelq2.f">
21 * SUBROUTINE ZGELQ2( M, N, A, LDA, TAU, WORK, INFO )
23 * .. Scalar Arguments ..
24 * INTEGER INFO, LDA, M, N
26 * .. Array Arguments ..
27 * COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
36 *> ZGELQ2 computes an LQ factorization of a complex m by n matrix A:
46 *> The number of rows of the matrix A. M >= 0.
52 *> The number of columns of the matrix A. N >= 0.
57 *> A is COMPLEX*16 array, dimension (LDA,N)
58 *> On entry, the m by n matrix A.
59 *> On exit, the elements on and below the diagonal of the array
60 *> contain the m by min(m,n) lower trapezoidal matrix L (L is
61 *> lower triangular if m <= n); the elements above the diagonal,
62 *> with the array TAU, represent the unitary matrix Q as a
63 *> product of elementary reflectors (see Further Details).
69 *> The leading dimension of the array A. LDA >= max(1,M).
74 *> TAU is COMPLEX*16 array, dimension (min(M,N))
75 *> The scalar factors of the elementary reflectors (see Further
81 *> WORK is COMPLEX*16 array, dimension (M)
87 *> = 0: successful exit
88 *> < 0: if INFO = -i, the i-th argument had an illegal value
94 *> \author Univ. of Tennessee
95 *> \author Univ. of California Berkeley
96 *> \author Univ. of Colorado Denver
99 *> \date September 2012
101 *> \ingroup complex16GEcomputational
103 *> \par Further Details:
104 * =====================
108 *> The matrix Q is represented as a product of elementary reflectors
110 *> Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).
112 *> Each H(i) has the form
114 *> H(i) = I - tau * v * v**H
116 *> where tau is a complex scalar, and v is a complex vector with
117 *> v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
118 *> A(i,i+1:n), and tau in TAU(i).
121 * =====================================================================
122 SUBROUTINE ZGELQ2( M, N, A, LDA, TAU, WORK, INFO )
124 * -- LAPACK computational routine (version 3.4.2) --
125 * -- LAPACK is a software package provided by Univ. of Tennessee, --
126 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
129 * .. Scalar Arguments ..
130 INTEGER INFO, LDA, M, N
132 * .. Array Arguments ..
133 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
136 * =====================================================================
140 PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
142 * .. Local Scalars ..
146 * .. External Subroutines ..
147 EXTERNAL XERBLA, ZLACGV, ZLARF, ZLARFG
149 * .. Intrinsic Functions ..
152 * .. Executable Statements ..
154 * Test the input arguments
159 ELSE IF( N.LT.0 ) THEN
161 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
165 CALL XERBLA( 'ZGELQ2', -INFO )
173 * Generate elementary reflector H(i) to annihilate A(i,i+1:n)
175 CALL ZLACGV( N-I+1, A( I, I ), LDA )
177 CALL ZLARFG( N-I+1, ALPHA, A( I, MIN( I+1, N ) ), LDA,
181 * Apply H(i) to A(i+1:m,i:n) from the right
184 CALL ZLARF( 'Right', M-I, N-I+1, A( I, I ), LDA, TAU( I ),
185 $ A( I+1, I ), LDA, WORK )
188 CALL ZLACGV( N-I+1, A( I, I ), LDA )