3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download STRSEN + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsen.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsen.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsen.f">
21 * SUBROUTINE STRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
22 * M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
24 * .. Scalar Arguments ..
25 * CHARACTER COMPQ, JOB
26 * INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
29 * .. Array Arguments ..
32 * REAL Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
42 *> STRSEN reorders the real Schur factorization of a real matrix
43 *> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
44 *> the leading diagonal blocks of the upper quasi-triangular matrix T,
45 *> and the leading columns of Q form an orthonormal basis of the
46 *> corresponding right invariant subspace.
48 *> Optionally the routine computes the reciprocal condition numbers of
49 *> the cluster of eigenvalues and/or the invariant subspace.
51 *> T must be in Schur canonical form (as returned by SHSEQR), that is,
52 *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
53 *> 2-by-2 diagonal block has its diagonal elements equal and its
54 *> off-diagonal elements of opposite sign.
63 *> Specifies whether condition numbers are required for the
64 *> cluster of eigenvalues (S) or the invariant subspace (SEP):
66 *> = 'E': for eigenvalues only (S);
67 *> = 'V': for invariant subspace only (SEP);
68 *> = 'B': for both eigenvalues and invariant subspace (S and
74 *> COMPQ is CHARACTER*1
75 *> = 'V': update the matrix Q of Schur vectors;
76 *> = 'N': do not update Q.
81 *> SELECT is LOGICAL array, dimension (N)
82 *> SELECT specifies the eigenvalues in the selected cluster. To
83 *> select a real eigenvalue w(j), SELECT(j) must be set to
84 *> .TRUE.. To select a complex conjugate pair of eigenvalues
85 *> w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
86 *> either SELECT(j) or SELECT(j+1) or both must be set to
87 *> .TRUE.; a complex conjugate pair of eigenvalues must be
88 *> either both included in the cluster or both excluded.
94 *> The order of the matrix T. N >= 0.
99 *> T is REAL array, dimension (LDT,N)
100 *> On entry, the upper quasi-triangular matrix T, in Schur
102 *> On exit, T is overwritten by the reordered matrix T, again in
103 *> Schur canonical form, with the selected eigenvalues in the
104 *> leading diagonal blocks.
110 *> The leading dimension of the array T. LDT >= max(1,N).
115 *> Q is REAL array, dimension (LDQ,N)
116 *> On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
117 *> On exit, if COMPQ = 'V', Q has been postmultiplied by the
118 *> orthogonal transformation matrix which reorders T; the
119 *> leading M columns of Q form an orthonormal basis for the
120 *> specified invariant subspace.
121 *> If COMPQ = 'N', Q is not referenced.
127 *> The leading dimension of the array Q.
128 *> LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
133 *> WR is REAL array, dimension (N)
138 *> WI is REAL array, dimension (N)
140 *> The real and imaginary parts, respectively, of the reordered
141 *> eigenvalues of T. The eigenvalues are stored in the same
142 *> order as on the diagonal of T, with WR(i) = T(i,i) and, if
143 *> T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
144 *> WI(i+1) = -WI(i). Note that if a complex eigenvalue is
145 *> sufficiently ill-conditioned, then its value may differ
146 *> significantly from its value before reordering.
152 *> The dimension of the specified invariant subspace.
159 *> If JOB = 'E' or 'B', S is a lower bound on the reciprocal
160 *> condition number for the selected cluster of eigenvalues.
161 *> S cannot underestimate the true reciprocal condition number
162 *> by more than a factor of sqrt(N). If M = 0 or N, S = 1.
163 *> If JOB = 'N' or 'V', S is not referenced.
169 *> If JOB = 'V' or 'B', SEP is the estimated reciprocal
170 *> condition number of the specified invariant subspace. If
171 *> M = 0 or N, SEP = norm(T).
172 *> If JOB = 'N' or 'E', SEP is not referenced.
177 *> WORK is REAL array, dimension (MAX(1,LWORK))
178 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
184 *> The dimension of the array WORK.
185 *> If JOB = 'N', LWORK >= max(1,N);
186 *> if JOB = 'E', LWORK >= max(1,M*(N-M));
187 *> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
189 *> If LWORK = -1, then a workspace query is assumed; the routine
190 *> only calculates the optimal size of the WORK array, returns
191 *> this value as the first entry of the WORK array, and no error
192 *> message related to LWORK is issued by XERBLA.
197 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
198 *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
204 *> The dimension of the array IWORK.
205 *> If JOB = 'N' or 'E', LIWORK >= 1;
206 *> if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
208 *> If LIWORK = -1, then a workspace query is assumed; the
209 *> routine only calculates the optimal size of the IWORK array,
210 *> returns this value as the first entry of the IWORK array, and
211 *> no error message related to LIWORK is issued by XERBLA.
217 *> = 0: successful exit
218 *> < 0: if INFO = -i, the i-th argument had an illegal value
219 *> = 1: reordering of T failed because some eigenvalues are too
220 *> close to separate (the problem is very ill-conditioned);
221 *> T may have been partially reordered, and WR and WI
222 *> contain the eigenvalues in the same order as in T; S and
223 *> SEP (if requested) are set to zero.
229 *> \author Univ. of Tennessee
230 *> \author Univ. of California Berkeley
231 *> \author Univ. of Colorado Denver
236 *> \ingroup realOTHERcomputational
238 *> \par Further Details:
239 * =====================
243 *> STRSEN first collects the selected eigenvalues by computing an
244 *> orthogonal transformation Z to move them to the top left corner of T.
245 *> In other words, the selected eigenvalues are the eigenvalues of T11
248 *> Z**T * T * Z = ( T11 T12 ) n1
252 *> where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
253 *> of Z span the specified invariant subspace of T.
255 *> If T has been obtained from the real Schur factorization of a matrix
256 *> A = Q*T*Q**T, then the reordered real Schur factorization of A is given
257 *> by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
258 *> the corresponding invariant subspace of A.
260 *> The reciprocal condition number of the average of the eigenvalues of
261 *> T11 may be returned in S. S lies between 0 (very badly conditioned)
262 *> and 1 (very well conditioned). It is computed as follows. First we
269 *> is the projector on the invariant subspace associated with T11.
270 *> R is the solution of the Sylvester equation:
272 *> T11*R - R*T22 = T12.
274 *> Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
275 *> the two-norm of M. Then S is computed as the lower bound
277 *> (1 + F-norm(R)**2)**(-1/2)
279 *> on the reciprocal of 2-norm(P), the true reciprocal condition number.
280 *> S cannot underestimate 1 / 2-norm(P) by more than a factor of
283 *> An approximate error bound for the computed average of the
284 *> eigenvalues of T11 is
288 *> where EPS is the machine precision.
290 *> The reciprocal condition number of the right invariant subspace
291 *> spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
292 *> SEP is defined as the separation of T11 and T22:
294 *> sep( T11, T22 ) = sigma-min( C )
296 *> where sigma-min(C) is the smallest singular value of the
297 *> n1*n2-by-n1*n2 matrix
299 *> C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
301 *> I(m) is an m by m identity matrix, and kprod denotes the Kronecker
302 *> product. We estimate sigma-min(C) by the reciprocal of an estimate of
303 *> the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
304 *> cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
306 *> When SEP is small, small changes in T can cause large changes in
307 *> the invariant subspace. An approximate bound on the maximum angular
308 *> error in the computed right invariant subspace is
310 *> EPS * norm(T) / SEP
313 * =====================================================================
314 SUBROUTINE STRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
315 $ M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
317 * -- LAPACK computational routine (version 3.4.1) --
318 * -- LAPACK is a software package provided by Univ. of Tennessee, --
319 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
322 * .. Scalar Arguments ..
324 INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
327 * .. Array Arguments ..
330 REAL Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
334 * =====================================================================
338 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
340 * .. Local Scalars ..
341 LOGICAL LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
343 INTEGER IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
345 REAL EST, RNORM, SCALE
350 * .. External Functions ..
353 EXTERNAL LSAME, SLANGE
355 * .. External Subroutines ..
356 EXTERNAL SLACN2, SLACPY, STREXC, STRSYL, XERBLA
358 * .. Intrinsic Functions ..
359 INTRINSIC ABS, MAX, SQRT
361 * .. Executable Statements ..
363 * Decode and test the input parameters
365 WANTBH = LSAME( JOB, 'B' )
366 WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
367 WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
368 WANTQ = LSAME( COMPQ, 'V' )
371 LQUERY = ( LWORK.EQ.-1 )
372 IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
375 ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
377 ELSE IF( N.LT.0 ) THEN
379 ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
381 ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
385 * Set M to the dimension of the specified invariant subspace,
386 * and test LWORK and LIWORK.
395 IF( T( K+1, K ).EQ.ZERO ) THEN
400 IF( SELECT( K ) .OR. SELECT( K+1 ) )
415 LWMIN = MAX( 1, 2*NN )
416 LIWMIN = MAX( 1, NN )
417 ELSE IF( LSAME( JOB, 'N' ) ) THEN
420 ELSE IF( LSAME( JOB, 'E' ) ) THEN
425 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
427 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
438 CALL XERBLA( 'STRSEN', -INFO )
440 ELSE IF( LQUERY ) THEN
444 * Quick return if possible.
446 IF( M.EQ.N .OR. M.EQ.0 ) THEN
450 $ SEP = SLANGE( '1', N, N, T, LDT, WORK )
454 * Collect the selected blocks at the top-left corner of T.
464 IF( T( K+1, K ).NE.ZERO ) THEN
466 SWAP = SWAP .OR. SELECT( K+1 )
472 * Swap the K-th block to position KS.
477 $ CALL STREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
479 IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
481 * Blocks too close to swap: exit.
498 * Solve Sylvester equation for R:
500 * T11*R - R*T22 = scale*T12
502 CALL SLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
503 CALL STRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
504 $ LDT, WORK, N1, SCALE, IERR )
506 * Estimate the reciprocal of the condition number of the cluster
509 RNORM = SLANGE( 'F', N1, N2, WORK, N1, WORK )
510 IF( RNORM.EQ.ZERO ) THEN
513 S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
520 * Estimate sep(T11,T22).
525 CALL SLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
529 * Solve T11*R - R*T22 = scale*X.
531 CALL STRSYL( 'N', 'N', -1, N1, N2, T, LDT,
532 $ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
536 * Solve T11**T*R - R*T22**T = scale*X.
538 CALL STRSYL( 'T', 'T', -1, N1, N2, T, LDT,
539 $ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
550 * Store the output eigenvalues in WR and WI.
557 IF( T( K+1, K ).NE.ZERO ) THEN
558 WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
559 $ SQRT( ABS( T( K+1, K ) ) )