3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SSYGST + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygst.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygst.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygst.f">
21 * SUBROUTINE SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
23 * .. Scalar Arguments ..
25 * INTEGER INFO, ITYPE, LDA, LDB, N
27 * .. Array Arguments ..
28 * REAL A( LDA, * ), B( LDB, * )
37 *> SSYGST reduces a real symmetric-definite generalized eigenproblem
40 *> If ITYPE = 1, the problem is A*x = lambda*B*x,
41 *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
43 *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
44 *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
46 *> B must have been previously factorized as U**T*U or L*L**T by SPOTRF.
55 *> = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
56 *> = 2 or 3: compute U*A*U**T or L**T*A*L.
61 *> UPLO is CHARACTER*1
62 *> = 'U': Upper triangle of A is stored and B is factored as
64 *> = 'L': Lower triangle of A is stored and B is factored as
71 *> The order of the matrices A and B. N >= 0.
76 *> A is REAL array, dimension (LDA,N)
77 *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
78 *> N-by-N upper triangular part of A contains the upper
79 *> triangular part of the matrix A, and the strictly lower
80 *> triangular part of A is not referenced. If UPLO = 'L', the
81 *> leading N-by-N lower triangular part of A contains the lower
82 *> triangular part of the matrix A, and the strictly upper
83 *> triangular part of A is not referenced.
85 *> On exit, if INFO = 0, the transformed matrix, stored in the
92 *> The leading dimension of the array A. LDA >= max(1,N).
97 *> B is REAL array, dimension (LDB,N)
98 *> The triangular factor from the Cholesky factorization of B,
99 *> as returned by SPOTRF.
105 *> The leading dimension of the array B. LDB >= max(1,N).
111 *> = 0: successful exit
112 *> < 0: if INFO = -i, the i-th argument had an illegal value
118 *> \author Univ. of Tennessee
119 *> \author Univ. of California Berkeley
120 *> \author Univ. of Colorado Denver
123 *> \date November 2011
125 *> \ingroup realSYcomputational
127 * =====================================================================
128 SUBROUTINE SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
130 * -- LAPACK computational routine (version 3.4.0) --
131 * -- LAPACK is a software package provided by Univ. of Tennessee, --
132 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
135 * .. Scalar Arguments ..
137 INTEGER INFO, ITYPE, LDA, LDB, N
139 * .. Array Arguments ..
140 REAL A( LDA, * ), B( LDB, * )
143 * =====================================================================
147 PARAMETER ( ONE = 1.0, HALF = 0.5 )
149 * .. Local Scalars ..
153 * .. External Subroutines ..
154 EXTERNAL SSYGS2, SSYMM, SSYR2K, STRMM, STRSM, XERBLA
156 * .. Intrinsic Functions ..
159 * .. External Functions ..
162 EXTERNAL LSAME, ILAENV
164 * .. Executable Statements ..
166 * Test the input parameters.
169 UPPER = LSAME( UPLO, 'U' )
170 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
172 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
174 ELSE IF( N.LT.0 ) THEN
176 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
178 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
182 CALL XERBLA( 'SSYGST', -INFO )
186 * Quick return if possible
191 * Determine the block size for this environment.
193 NB = ILAENV( 1, 'SSYGST', UPLO, N, -1, -1, -1 )
195 IF( NB.LE.1 .OR. NB.GE.N ) THEN
199 CALL SSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
204 IF( ITYPE.EQ.1 ) THEN
207 * Compute inv(U**T)*A*inv(U)
210 KB = MIN( N-K+1, NB )
212 * Update the upper triangle of A(k:n,k:n)
214 CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
215 $ B( K, K ), LDB, INFO )
217 CALL STRSM( 'Left', UPLO, 'Transpose', 'Non-unit',
218 $ KB, N-K-KB+1, ONE, B( K, K ), LDB,
219 $ A( K, K+KB ), LDA )
220 CALL SSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
221 $ A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
222 $ A( K, K+KB ), LDA )
223 CALL SSYR2K( UPLO, 'Transpose', N-K-KB+1, KB, -ONE,
224 $ A( K, K+KB ), LDA, B( K, K+KB ), LDB,
225 $ ONE, A( K+KB, K+KB ), LDA )
226 CALL SSYMM( 'Left', UPLO, KB, N-K-KB+1, -HALF,
227 $ A( K, K ), LDA, B( K, K+KB ), LDB, ONE,
228 $ A( K, K+KB ), LDA )
229 CALL STRSM( 'Right', UPLO, 'No transpose',
230 $ 'Non-unit', KB, N-K-KB+1, ONE,
231 $ B( K+KB, K+KB ), LDB, A( K, K+KB ),
237 * Compute inv(L)*A*inv(L**T)
240 KB = MIN( N-K+1, NB )
242 * Update the lower triangle of A(k:n,k:n)
244 CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
245 $ B( K, K ), LDB, INFO )
247 CALL STRSM( 'Right', UPLO, 'Transpose', 'Non-unit',
248 $ N-K-KB+1, KB, ONE, B( K, K ), LDB,
249 $ A( K+KB, K ), LDA )
250 CALL SSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
251 $ A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
252 $ A( K+KB, K ), LDA )
253 CALL SSYR2K( UPLO, 'No transpose', N-K-KB+1, KB,
254 $ -ONE, A( K+KB, K ), LDA, B( K+KB, K ),
255 $ LDB, ONE, A( K+KB, K+KB ), LDA )
256 CALL SSYMM( 'Right', UPLO, N-K-KB+1, KB, -HALF,
257 $ A( K, K ), LDA, B( K+KB, K ), LDB, ONE,
258 $ A( K+KB, K ), LDA )
259 CALL STRSM( 'Left', UPLO, 'No transpose',
260 $ 'Non-unit', N-K-KB+1, KB, ONE,
261 $ B( K+KB, K+KB ), LDB, A( K+KB, K ),
272 KB = MIN( N-K+1, NB )
274 * Update the upper triangle of A(1:k+kb-1,1:k+kb-1)
276 CALL STRMM( 'Left', UPLO, 'No transpose', 'Non-unit',
277 $ K-1, KB, ONE, B, LDB, A( 1, K ), LDA )
278 CALL SSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
279 $ LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
280 CALL SSYR2K( UPLO, 'No transpose', K-1, KB, ONE,
281 $ A( 1, K ), LDA, B( 1, K ), LDB, ONE, A,
283 CALL SSYMM( 'Right', UPLO, K-1, KB, HALF, A( K, K ),
284 $ LDA, B( 1, K ), LDB, ONE, A( 1, K ), LDA )
285 CALL STRMM( 'Right', UPLO, 'Transpose', 'Non-unit',
286 $ K-1, KB, ONE, B( K, K ), LDB, A( 1, K ),
288 CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
289 $ B( K, K ), LDB, INFO )
296 KB = MIN( N-K+1, NB )
298 * Update the lower triangle of A(1:k+kb-1,1:k+kb-1)
300 CALL STRMM( 'Right', UPLO, 'No transpose', 'Non-unit',
301 $ KB, K-1, ONE, B, LDB, A( K, 1 ), LDA )
302 CALL SSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
303 $ LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
304 CALL SSYR2K( UPLO, 'Transpose', K-1, KB, ONE,
305 $ A( K, 1 ), LDA, B( K, 1 ), LDB, ONE, A,
307 CALL SSYMM( 'Left', UPLO, KB, K-1, HALF, A( K, K ),
308 $ LDA, B( K, 1 ), LDB, ONE, A( K, 1 ), LDA )
309 CALL STRMM( 'Left', UPLO, 'Transpose', 'Non-unit', KB,
310 $ K-1, ONE, B( K, K ), LDB, A( K, 1 ), LDA )
311 CALL SSYGS2( ITYPE, UPLO, KB, A( K, K ), LDA,
312 $ B( K, K ), LDB, INFO )