1 *> \brief <b> SSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SSPEVD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspevd.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspevd.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspevd.f">
21 * SUBROUTINE SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
22 * IWORK, LIWORK, INFO )
24 * .. Scalar Arguments ..
25 * CHARACTER JOBZ, UPLO
26 * INTEGER INFO, LDZ, LIWORK, LWORK, N
28 * .. Array Arguments ..
30 * REAL AP( * ), W( * ), WORK( * ), Z( LDZ, * )
39 *> SSPEVD computes all the eigenvalues and, optionally, eigenvectors
40 *> of a real symmetric matrix A in packed storage. If eigenvectors are
41 *> desired, it uses a divide and conquer algorithm.
43 *> The divide and conquer algorithm makes very mild assumptions about
44 *> floating point arithmetic. It will work on machines with a guard
45 *> digit in add/subtract, or on those binary machines without guard
46 *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
47 *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
48 *> without guard digits, but we know of none.
56 *> JOBZ is CHARACTER*1
57 *> = 'N': Compute eigenvalues only;
58 *> = 'V': Compute eigenvalues and eigenvectors.
63 *> UPLO is CHARACTER*1
64 *> = 'U': Upper triangle of A is stored;
65 *> = 'L': Lower triangle of A is stored.
71 *> The order of the matrix A. N >= 0.
76 *> AP is REAL array, dimension (N*(N+1)/2)
77 *> On entry, the upper or lower triangle of the symmetric matrix
78 *> A, packed columnwise in a linear array. The j-th column of A
79 *> is stored in the array AP as follows:
80 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
81 *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
83 *> On exit, AP is overwritten by values generated during the
84 *> reduction to tridiagonal form. If UPLO = 'U', the diagonal
85 *> and first superdiagonal of the tridiagonal matrix T overwrite
86 *> the corresponding elements of A, and if UPLO = 'L', the
87 *> diagonal and first subdiagonal of T overwrite the
88 *> corresponding elements of A.
93 *> W is REAL array, dimension (N)
94 *> If INFO = 0, the eigenvalues in ascending order.
99 *> Z is REAL array, dimension (LDZ, N)
100 *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
101 *> eigenvectors of the matrix A, with the i-th column of Z
102 *> holding the eigenvector associated with W(i).
103 *> If JOBZ = 'N', then Z is not referenced.
109 *> The leading dimension of the array Z. LDZ >= 1, and if
110 *> JOBZ = 'V', LDZ >= max(1,N).
115 *> WORK is REAL array, dimension (MAX(1,LWORK))
116 *> On exit, if INFO = 0, WORK(1) returns the required LWORK.
122 *> The dimension of the array WORK.
123 *> If N <= 1, LWORK must be at least 1.
124 *> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N.
125 *> If JOBZ = 'V' and N > 1, LWORK must be at least
128 *> If LWORK = -1, then a workspace query is assumed; the routine
129 *> only calculates the required sizes of the WORK and IWORK
130 *> arrays, returns these values as the first entries of the WORK
131 *> and IWORK arrays, and no error message related to LWORK or
132 *> LIWORK is issued by XERBLA.
137 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
138 *> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
144 *> The dimension of the array IWORK.
145 *> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
146 *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
148 *> If LIWORK = -1, then a workspace query is assumed; the
149 *> routine only calculates the required sizes of the WORK and
150 *> IWORK arrays, returns these values as the first entries of
151 *> the WORK and IWORK arrays, and no error message related to
152 *> LWORK or LIWORK is issued by XERBLA.
158 *> = 0: successful exit
159 *> < 0: if INFO = -i, the i-th argument had an illegal value.
160 *> > 0: if INFO = i, the algorithm failed to converge; i
161 *> off-diagonal elements of an intermediate tridiagonal
162 *> form did not converge to zero.
168 *> \author Univ. of Tennessee
169 *> \author Univ. of California Berkeley
170 *> \author Univ. of Colorado Denver
173 *> \date November 2011
175 *> \ingroup realOTHEReigen
177 * =====================================================================
178 SUBROUTINE SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK,
179 $ IWORK, LIWORK, INFO )
181 * -- LAPACK driver routine (version 3.4.0) --
182 * -- LAPACK is a software package provided by Univ. of Tennessee, --
183 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
186 * .. Scalar Arguments ..
188 INTEGER INFO, LDZ, LIWORK, LWORK, N
190 * .. Array Arguments ..
192 REAL AP( * ), W( * ), WORK( * ), Z( LDZ, * )
195 * =====================================================================
199 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
201 * .. Local Scalars ..
202 LOGICAL LQUERY, WANTZ
203 INTEGER IINFO, INDE, INDTAU, INDWRK, ISCALE, LIWMIN,
205 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
208 * .. External Functions ..
211 EXTERNAL LSAME, SLAMCH, SLANSP
213 * .. External Subroutines ..
214 EXTERNAL SOPMTR, SSCAL, SSPTRD, SSTEDC, SSTERF, XERBLA
216 * .. Intrinsic Functions ..
219 * .. Executable Statements ..
221 * Test the input parameters.
223 WANTZ = LSAME( JOBZ, 'V' )
224 LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
227 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
229 ELSE IF( .NOT.( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) )
232 ELSE IF( N.LT.0 ) THEN
234 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
245 LWMIN = 1 + 6*N + N**2
254 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
256 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
262 CALL XERBLA( 'SSPEVD', -INFO )
264 ELSE IF( LQUERY ) THEN
268 * Quick return if possible
280 * Get machine constants.
282 SAFMIN = SLAMCH( 'Safe minimum' )
283 EPS = SLAMCH( 'Precision' )
284 SMLNUM = SAFMIN / EPS
285 BIGNUM = ONE / SMLNUM
286 RMIN = SQRT( SMLNUM )
287 RMAX = SQRT( BIGNUM )
289 * Scale matrix to allowable range, if necessary.
291 ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
293 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
296 ELSE IF( ANRM.GT.RMAX ) THEN
300 IF( ISCALE.EQ.1 ) THEN
301 CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
304 * Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
308 CALL SSPTRD( UPLO, N, AP, W, WORK( INDE ), WORK( INDTAU ), IINFO )
310 * For eigenvalues only, call SSTERF. For eigenvectors, first call
311 * SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
312 * tridiagonal matrix, then call SOPMTR to multiply it by the
313 * Householder transformations represented in AP.
315 IF( .NOT.WANTZ ) THEN
316 CALL SSTERF( N, W, WORK( INDE ), INFO )
319 LLWORK = LWORK - INDWRK + 1
320 CALL SSTEDC( 'I', N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ),
321 $ LLWORK, IWORK, LIWORK, INFO )
322 CALL SOPMTR( 'L', UPLO, 'N', N, N, AP, WORK( INDTAU ), Z, LDZ,
323 $ WORK( INDWRK ), IINFO )
326 * If matrix was scaled, then rescale eigenvalues appropriately.
329 $ CALL SSCAL( N, ONE / SIGMA, W, 1 )