1 *> \brief <b> SSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SSBEVD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbevd.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbevd.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbevd.f">
21 * SUBROUTINE SSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
22 * LWORK, IWORK, LIWORK, INFO )
24 * .. Scalar Arguments ..
25 * CHARACTER JOBZ, UPLO
26 * INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
28 * .. Array Arguments ..
30 * REAL AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
39 *> SSBEVD computes all the eigenvalues and, optionally, eigenvectors of
40 *> a real symmetric band matrix A. If eigenvectors are desired, it uses
41 *> a divide and conquer algorithm.
43 *> The divide and conquer algorithm makes very mild assumptions about
44 *> floating point arithmetic. It will work on machines with a guard
45 *> digit in add/subtract, or on those binary machines without guard
46 *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
47 *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
48 *> without guard digits, but we know of none.
56 *> JOBZ is CHARACTER*1
57 *> = 'N': Compute eigenvalues only;
58 *> = 'V': Compute eigenvalues and eigenvectors.
63 *> UPLO is CHARACTER*1
64 *> = 'U': Upper triangle of A is stored;
65 *> = 'L': Lower triangle of A is stored.
71 *> The order of the matrix A. N >= 0.
77 *> The number of superdiagonals of the matrix A if UPLO = 'U',
78 *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
83 *> AB is REAL array, dimension (LDAB, N)
84 *> On entry, the upper or lower triangle of the symmetric band
85 *> matrix A, stored in the first KD+1 rows of the array. The
86 *> j-th column of A is stored in the j-th column of the array AB
88 *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
89 *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
91 *> On exit, AB is overwritten by values generated during the
92 *> reduction to tridiagonal form. If UPLO = 'U', the first
93 *> superdiagonal and the diagonal of the tridiagonal matrix T
94 *> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
95 *> the diagonal and first subdiagonal of T are returned in the
96 *> first two rows of AB.
102 *> The leading dimension of the array AB. LDAB >= KD + 1.
107 *> W is REAL array, dimension (N)
108 *> If INFO = 0, the eigenvalues in ascending order.
113 *> Z is REAL array, dimension (LDZ, N)
114 *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
115 *> eigenvectors of the matrix A, with the i-th column of Z
116 *> holding the eigenvector associated with W(i).
117 *> If JOBZ = 'N', then Z is not referenced.
123 *> The leading dimension of the array Z. LDZ >= 1, and if
124 *> JOBZ = 'V', LDZ >= max(1,N).
129 *> WORK is REAL array,
131 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
137 *> The dimension of the array WORK.
138 *> IF N <= 1, LWORK must be at least 1.
139 *> If JOBZ = 'N' and N > 2, LWORK must be at least 2*N.
140 *> If JOBZ = 'V' and N > 2, LWORK must be at least
141 *> ( 1 + 5*N + 2*N**2 ).
143 *> If LWORK = -1, then a workspace query is assumed; the routine
144 *> only calculates the optimal sizes of the WORK and IWORK
145 *> arrays, returns these values as the first entries of the WORK
146 *> and IWORK arrays, and no error message related to LWORK or
147 *> LIWORK is issued by XERBLA.
152 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
153 *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
159 *> The dimension of the array IWORK.
160 *> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
161 *> If JOBZ = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
163 *> If LIWORK = -1, then a workspace query is assumed; the
164 *> routine only calculates the optimal sizes of the WORK and
165 *> IWORK arrays, returns these values as the first entries of
166 *> the WORK and IWORK arrays, and no error message related to
167 *> LWORK or LIWORK is issued by XERBLA.
173 *> = 0: successful exit
174 *> < 0: if INFO = -i, the i-th argument had an illegal value
175 *> > 0: if INFO = i, the algorithm failed to converge; i
176 *> off-diagonal elements of an intermediate tridiagonal
177 *> form did not converge to zero.
183 *> \author Univ. of Tennessee
184 *> \author Univ. of California Berkeley
185 *> \author Univ. of Colorado Denver
188 *> \date November 2011
190 *> \ingroup realOTHEReigen
192 * =====================================================================
193 SUBROUTINE SSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
194 $ LWORK, IWORK, LIWORK, INFO )
196 * -- LAPACK driver routine (version 3.4.0) --
197 * -- LAPACK is a software package provided by Univ. of Tennessee, --
198 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
201 * .. Scalar Arguments ..
203 INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
205 * .. Array Arguments ..
207 REAL AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
210 * =====================================================================
214 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
216 * .. Local Scalars ..
217 LOGICAL LOWER, LQUERY, WANTZ
218 INTEGER IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
220 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
223 * .. External Functions ..
226 EXTERNAL LSAME, SLAMCH, SLANSB
228 * .. External Subroutines ..
229 EXTERNAL SGEMM, SLACPY, SLASCL, SSBTRD, SSCAL, SSTEDC,
232 * .. Intrinsic Functions ..
235 * .. Executable Statements ..
237 * Test the input parameters.
239 WANTZ = LSAME( JOBZ, 'V' )
240 LOWER = LSAME( UPLO, 'L' )
241 LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
250 LWMIN = 1 + 5*N + 2*N**2
256 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
258 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
260 ELSE IF( N.LT.0 ) THEN
262 ELSE IF( KD.LT.0 ) THEN
264 ELSE IF( LDAB.LT.KD+1 ) THEN
266 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
274 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
276 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
282 CALL XERBLA( 'SSBEVD', -INFO )
284 ELSE IF( LQUERY ) THEN
288 * Quick return if possible
300 * Get machine constants.
302 SAFMIN = SLAMCH( 'Safe minimum' )
303 EPS = SLAMCH( 'Precision' )
304 SMLNUM = SAFMIN / EPS
305 BIGNUM = ONE / SMLNUM
306 RMIN = SQRT( SMLNUM )
307 RMAX = SQRT( BIGNUM )
309 * Scale matrix to allowable range, if necessary.
311 ANRM = SLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
313 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
316 ELSE IF( ANRM.GT.RMAX ) THEN
320 IF( ISCALE.EQ.1 ) THEN
322 CALL SLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
324 CALL SLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
328 * Call SSBTRD to reduce symmetric band matrix to tridiagonal form.
332 INDWK2 = INDWRK + N*N
333 LLWRK2 = LWORK - INDWK2 + 1
334 CALL SSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, WORK( INDE ), Z, LDZ,
335 $ WORK( INDWRK ), IINFO )
337 * For eigenvalues only, call SSTERF. For eigenvectors, call SSTEDC.
339 IF( .NOT.WANTZ ) THEN
340 CALL SSTERF( N, W, WORK( INDE ), INFO )
342 CALL SSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
343 $ WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
344 CALL SGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
345 $ ZERO, WORK( INDWK2 ), N )
346 CALL SLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
349 * If matrix was scaled, then rescale eigenvalues appropriately.
352 $ CALL SSCAL( N, ONE / SIGMA, W, 1 )