3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SPORFSX + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sporfsx.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sporfsx.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sporfsx.f">
21 * SUBROUTINE SPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
22 * LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
23 * ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
26 * .. Scalar Arguments ..
27 * CHARACTER UPLO, EQUED
28 * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
32 * .. Array Arguments ..
34 * REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
35 * $ X( LDX, * ), WORK( * )
36 * REAL S( * ), PARAMS( * ), BERR( * ),
37 * $ ERR_BNDS_NORM( NRHS, * ),
38 * $ ERR_BNDS_COMP( NRHS, * )
47 *> SPORFSX improves the computed solution to a system of linear
48 *> equations when the coefficient matrix is symmetric positive
49 *> definite, and provides error bounds and backward error estimates
50 *> for the solution. In addition to normwise error bound, the code
51 *> provides maximum componentwise error bound if possible. See
52 *> comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the
55 *> The original system of linear equations may have been equilibrated
56 *> before calling this routine, as described by arguments EQUED and S
57 *> below. In this case, the solution and error bounds returned are
58 *> for the original unequilibrated system.
65 *> Some optional parameters are bundled in the PARAMS array. These
66 *> settings determine how refinement is performed, but often the
67 *> defaults are acceptable. If the defaults are acceptable, users
68 *> can pass NPARAMS = 0 which prevents the source code from accessing
69 *> the PARAMS argument.
74 *> UPLO is CHARACTER*1
75 *> = 'U': Upper triangle of A is stored;
76 *> = 'L': Lower triangle of A is stored.
81 *> EQUED is CHARACTER*1
82 *> Specifies the form of equilibration that was done to A
83 *> before calling this routine. This is needed to compute
84 *> the solution and error bounds correctly.
85 *> = 'N': No equilibration
86 *> = 'Y': Both row and column equilibration, i.e., A has been
87 *> replaced by diag(S) * A * diag(S).
88 *> The right hand side B has been changed accordingly.
94 *> The order of the matrix A. N >= 0.
100 *> The number of right hand sides, i.e., the number of columns
101 *> of the matrices B and X. NRHS >= 0.
106 *> A is REAL array, dimension (LDA,N)
107 *> The symmetric matrix A. If UPLO = 'U', the leading N-by-N
108 *> upper triangular part of A contains the upper triangular part
109 *> of the matrix A, and the strictly lower triangular part of A
110 *> is not referenced. If UPLO = 'L', the leading N-by-N lower
111 *> triangular part of A contains the lower triangular part of
112 *> the matrix A, and the strictly upper triangular part of A is
119 *> The leading dimension of the array A. LDA >= max(1,N).
124 *> AF is REAL array, dimension (LDAF,N)
125 *> The triangular factor U or L from the Cholesky factorization
126 *> A = U**T*U or A = L*L**T, as computed by SPOTRF.
132 *> The leading dimension of the array AF. LDAF >= max(1,N).
137 *> S is REAL array, dimension (N)
138 *> The row scale factors for A. If EQUED = 'Y', A is multiplied on
139 *> the left and right by diag(S). S is an input argument if FACT =
140 *> 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
141 *> = 'Y', each element of S must be positive. If S is output, each
142 *> element of S is a power of the radix. If S is input, each element
143 *> of S should be a power of the radix to ensure a reliable solution
144 *> and error estimates. Scaling by powers of the radix does not cause
145 *> rounding errors unless the result underflows or overflows.
146 *> Rounding errors during scaling lead to refining with a matrix that
147 *> is not equivalent to the input matrix, producing error estimates
148 *> that may not be reliable.
153 *> B is REAL array, dimension (LDB,NRHS)
154 *> The right hand side matrix B.
160 *> The leading dimension of the array B. LDB >= max(1,N).
165 *> X is REAL array, dimension (LDX,NRHS)
166 *> On entry, the solution matrix X, as computed by SGETRS.
167 *> On exit, the improved solution matrix X.
173 *> The leading dimension of the array X. LDX >= max(1,N).
179 *> Reciprocal scaled condition number. This is an estimate of the
180 *> reciprocal Skeel condition number of the matrix A after
181 *> equilibration (if done). If this is less than the machine
182 *> precision (in particular, if it is zero), the matrix is singular
183 *> to working precision. Note that the error may still be small even
184 *> if this number is very small and the matrix appears ill-
190 *> BERR is REAL array, dimension (NRHS)
191 *> Componentwise relative backward error. This is the
192 *> componentwise relative backward error of each solution vector X(j)
193 *> (i.e., the smallest relative change in any element of A or B that
194 *> makes X(j) an exact solution).
197 *> \param[in] N_ERR_BNDS
199 *> N_ERR_BNDS is INTEGER
200 *> Number of error bounds to return for each right hand side
201 *> and each type (normwise or componentwise). See ERR_BNDS_NORM and
202 *> ERR_BNDS_COMP below.
205 *> \param[out] ERR_BNDS_NORM
207 *> ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
208 *> For each right-hand side, this array contains information about
209 *> various error bounds and condition numbers corresponding to the
210 *> normwise relative error, which is defined as follows:
212 *> Normwise relative error in the ith solution vector:
213 *> max_j (abs(XTRUE(j,i) - X(j,i)))
214 *> ------------------------------
217 *> The array is indexed by the type of error information as described
218 *> below. There currently are up to three pieces of information
221 *> The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
224 *> The second index in ERR_BNDS_NORM(:,err) contains the following
226 *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
227 *> reciprocal condition number is less than the threshold
228 *> sqrt(n) * slamch('Epsilon').
230 *> err = 2 "Guaranteed" error bound: The estimated forward error,
231 *> almost certainly within a factor of 10 of the true error
232 *> so long as the next entry is greater than the threshold
233 *> sqrt(n) * slamch('Epsilon'). This error bound should only
234 *> be trusted if the previous boolean is true.
236 *> err = 3 Reciprocal condition number: Estimated normwise
237 *> reciprocal condition number. Compared with the threshold
238 *> sqrt(n) * slamch('Epsilon') to determine if the error
239 *> estimate is "guaranteed". These reciprocal condition
240 *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
241 *> appropriately scaled matrix Z.
242 *> Let Z = S*A, where S scales each row by a power of the
243 *> radix so all absolute row sums of Z are approximately 1.
245 *> See Lapack Working Note 165 for further details and extra
249 *> \param[out] ERR_BNDS_COMP
251 *> ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
252 *> For each right-hand side, this array contains information about
253 *> various error bounds and condition numbers corresponding to the
254 *> componentwise relative error, which is defined as follows:
256 *> Componentwise relative error in the ith solution vector:
257 *> abs(XTRUE(j,i) - X(j,i))
258 *> max_j ----------------------
261 *> The array is indexed by the right-hand side i (on which the
262 *> componentwise relative error depends), and the type of error
263 *> information as described below. There currently are up to three
264 *> pieces of information returned for each right-hand side. If
265 *> componentwise accuracy is not requested (PARAMS(3) = 0.0), then
266 *> ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
267 *> the first (:,N_ERR_BNDS) entries are returned.
269 *> The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
272 *> The second index in ERR_BNDS_COMP(:,err) contains the following
274 *> err = 1 "Trust/don't trust" boolean. Trust the answer if the
275 *> reciprocal condition number is less than the threshold
276 *> sqrt(n) * slamch('Epsilon').
278 *> err = 2 "Guaranteed" error bound: The estimated forward error,
279 *> almost certainly within a factor of 10 of the true error
280 *> so long as the next entry is greater than the threshold
281 *> sqrt(n) * slamch('Epsilon'). This error bound should only
282 *> be trusted if the previous boolean is true.
284 *> err = 3 Reciprocal condition number: Estimated componentwise
285 *> reciprocal condition number. Compared with the threshold
286 *> sqrt(n) * slamch('Epsilon') to determine if the error
287 *> estimate is "guaranteed". These reciprocal condition
288 *> numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
289 *> appropriately scaled matrix Z.
290 *> Let Z = S*(A*diag(x)), where x is the solution for the
291 *> current right-hand side and S scales each row of
292 *> A*diag(x) by a power of the radix so all absolute row
293 *> sums of Z are approximately 1.
295 *> See Lapack Working Note 165 for further details and extra
299 *> \param[in] NPARAMS
301 *> NPARAMS is INTEGER
302 *> Specifies the number of parameters set in PARAMS. If .LE. 0, the
303 *> PARAMS array is never referenced and default values are used.
306 *> \param[in,out] PARAMS
308 *> PARAMS is REAL array, dimension NPARAMS
309 *> Specifies algorithm parameters. If an entry is .LT. 0.0, then
310 *> that entry will be filled with default value used for that
311 *> parameter. Only positions up to NPARAMS are accessed; defaults
312 *> are used for higher-numbered parameters.
314 *> PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
315 *> refinement or not.
317 *> = 0.0 : No refinement is performed, and no error bounds are
319 *> = 1.0 : Use the double-precision refinement algorithm,
320 *> possibly with doubled-single computations if the
321 *> compilation environment does not support DOUBLE
323 *> (other values are reserved for future use)
325 *> PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
326 *> computations allowed for refinement.
328 *> Aggressive: Set to 100 to permit convergence using approximate
329 *> factorizations or factorizations other than LU. If
330 *> the factorization uses a technique other than
331 *> Gaussian elimination, the guarantees in
332 *> err_bnds_norm and err_bnds_comp may no longer be
335 *> PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
336 *> will attempt to find a solution with small componentwise
337 *> relative error in the double-precision algorithm. Positive
338 *> is true, 0.0 is false.
339 *> Default: 1.0 (attempt componentwise convergence)
344 *> WORK is REAL array, dimension (4*N)
349 *> IWORK is INTEGER array, dimension (N)
355 *> = 0: Successful exit. The solution to every right-hand side is
357 *> < 0: If INFO = -i, the i-th argument had an illegal value
358 *> > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
359 *> has been completed, but the factor U is exactly singular, so
360 *> the solution and error bounds could not be computed. RCOND = 0
362 *> = N+J: The solution corresponding to the Jth right-hand side is
363 *> not guaranteed. The solutions corresponding to other right-
364 *> hand sides K with K > J may not be guaranteed as well, but
365 *> only the first such right-hand side is reported. If a small
366 *> componentwise error is not requested (PARAMS(3) = 0.0) then
367 *> the Jth right-hand side is the first with a normwise error
368 *> bound that is not guaranteed (the smallest J such
369 *> that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
370 *> the Jth right-hand side is the first with either a normwise or
371 *> componentwise error bound that is not guaranteed (the smallest
372 *> J such that either ERR_BNDS_NORM(J,1) = 0.0 or
373 *> ERR_BNDS_COMP(J,1) = 0.0). See the definition of
374 *> ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
375 *> about all of the right-hand sides check ERR_BNDS_NORM or
382 *> \author Univ. of Tennessee
383 *> \author Univ. of California Berkeley
384 *> \author Univ. of Colorado Denver
389 *> \ingroup realPOcomputational
391 * =====================================================================
392 SUBROUTINE SPORFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, S, B,
393 $ LDB, X, LDX, RCOND, BERR, N_ERR_BNDS,
394 $ ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS,
395 $ WORK, IWORK, INFO )
397 * -- LAPACK computational routine (version 3.4.1) --
398 * -- LAPACK is a software package provided by Univ. of Tennessee, --
399 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
402 * .. Scalar Arguments ..
403 CHARACTER UPLO, EQUED
404 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
408 * .. Array Arguments ..
410 REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
411 $ X( LDX, * ), WORK( * )
412 REAL S( * ), PARAMS( * ), BERR( * ),
413 $ ERR_BNDS_NORM( NRHS, * ),
414 $ ERR_BNDS_COMP( NRHS, * )
417 * ==================================================================
421 PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
422 REAL ITREF_DEFAULT, ITHRESH_DEFAULT,
423 $ COMPONENTWISE_DEFAULT
424 REAL RTHRESH_DEFAULT, DZTHRESH_DEFAULT
425 PARAMETER ( ITREF_DEFAULT = 1.0 )
426 PARAMETER ( ITHRESH_DEFAULT = 10.0 )
427 PARAMETER ( COMPONENTWISE_DEFAULT = 1.0 )
428 PARAMETER ( RTHRESH_DEFAULT = 0.5 )
429 PARAMETER ( DZTHRESH_DEFAULT = 0.25 )
430 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
432 PARAMETER ( LA_LINRX_ITREF_I = 1,
433 $ LA_LINRX_ITHRESH_I = 2 )
434 PARAMETER ( LA_LINRX_CWISE_I = 3 )
435 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
437 PARAMETER ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
438 PARAMETER ( LA_LINRX_RCOND_I = 3 )
440 * .. Local Scalars ..
443 INTEGER J, PREC_TYPE, REF_TYPE
445 REAL ANORM, RCOND_TMP
446 REAL ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
449 REAL RTHRESH, UNSTABLE_THRESH
451 * .. External Subroutines ..
452 EXTERNAL XERBLA, SPOCON, SLA_PORFSX_EXTENDED
454 * .. Intrinsic Functions ..
457 * .. External Functions ..
458 EXTERNAL LSAME, ILAPREC
459 EXTERNAL SLAMCH, SLANSY, SLA_PORCOND
460 REAL SLAMCH, SLANSY, SLA_PORCOND
464 * .. Executable Statements ..
466 * Check the input parameters.
469 REF_TYPE = INT( ITREF_DEFAULT )
470 IF ( NPARAMS .GE. LA_LINRX_ITREF_I ) THEN
471 IF ( PARAMS( LA_LINRX_ITREF_I ) .LT. 0.0 ) THEN
472 PARAMS( LA_LINRX_ITREF_I ) = ITREF_DEFAULT
474 REF_TYPE = PARAMS( LA_LINRX_ITREF_I )
478 * Set default parameters.
480 ILLRCOND_THRESH = REAL( N ) * SLAMCH( 'Epsilon' )
481 ITHRESH = INT( ITHRESH_DEFAULT )
482 RTHRESH = RTHRESH_DEFAULT
483 UNSTABLE_THRESH = DZTHRESH_DEFAULT
484 IGNORE_CWISE = COMPONENTWISE_DEFAULT .EQ. 0.0
486 IF ( NPARAMS.GE.LA_LINRX_ITHRESH_I ) THEN
487 IF ( PARAMS( LA_LINRX_ITHRESH_I ).LT.0.0 ) THEN
488 PARAMS( LA_LINRX_ITHRESH_I ) = ITHRESH
490 ITHRESH = INT( PARAMS( LA_LINRX_ITHRESH_I ) )
493 IF ( NPARAMS.GE.LA_LINRX_CWISE_I ) THEN
494 IF ( PARAMS( LA_LINRX_CWISE_I ).LT.0.0 ) THEN
495 IF ( IGNORE_CWISE ) THEN
496 PARAMS( LA_LINRX_CWISE_I ) = 0.0
498 PARAMS( LA_LINRX_CWISE_I ) = 1.0
501 IGNORE_CWISE = PARAMS( LA_LINRX_CWISE_I ) .EQ. 0.0
504 IF ( REF_TYPE .EQ. 0 .OR. N_ERR_BNDS .EQ. 0 ) THEN
506 ELSE IF ( IGNORE_CWISE ) THEN
512 RCEQU = LSAME( EQUED, 'Y' )
514 * Test input parameters.
516 IF (.NOT.LSAME(UPLO, 'U') .AND. .NOT.LSAME(UPLO, 'L')) THEN
518 ELSE IF( .NOT.RCEQU .AND. .NOT.LSAME( EQUED, 'N' ) ) THEN
520 ELSE IF( N.LT.0 ) THEN
522 ELSE IF( NRHS.LT.0 ) THEN
524 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
526 ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN
528 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
530 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
534 CALL XERBLA( 'SPORFSX', -INFO )
538 * Quick return if possible.
540 IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
544 IF ( N_ERR_BNDS .GE. 1 ) THEN
545 ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0
546 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0
548 IF ( N_ERR_BNDS .GE. 2 ) THEN
549 ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 0.0
550 ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 0.0
552 IF ( N_ERR_BNDS .GE. 3 ) THEN
553 ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 1.0
554 ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 1.0
560 * Default to failure.
565 IF ( N_ERR_BNDS .GE. 1 ) THEN
566 ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0
567 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0
569 IF ( N_ERR_BNDS .GE. 2 ) THEN
570 ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0
571 ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0
573 IF ( N_ERR_BNDS .GE. 3 ) THEN
574 ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = 0.0
575 ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = 0.0
579 * Compute the norm of A and the reciprocal of the condition
583 ANORM = SLANSY( NORM, UPLO, N, A, LDA, WORK )
584 CALL SPOCON( UPLO, N, AF, LDAF, ANORM, RCOND, WORK,
587 * Perform refinement on each right-hand side
589 IF ( REF_TYPE .NE. 0 ) THEN
591 PREC_TYPE = ILAPREC( 'D' )
593 CALL SLA_PORFSX_EXTENDED( PREC_TYPE, UPLO, N,
594 $ NRHS, A, LDA, AF, LDAF, RCEQU, S, B,
595 $ LDB, X, LDX, BERR, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP,
596 $ WORK( N+1 ), WORK( 1 ), WORK( 2*N+1 ), WORK( 1 ), RCOND,
597 $ ITHRESH, RTHRESH, UNSTABLE_THRESH, IGNORE_CWISE,
601 ERR_LBND = MAX( 10.0, SQRT( REAL( N ) ) ) * SLAMCH( 'Epsilon' )
602 IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 1 ) THEN
604 * Compute scaled normwise condition number cond(A*C).
607 RCOND_TMP = SLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
608 $ -1, S, INFO, WORK, IWORK )
610 RCOND_TMP = SLA_PORCOND( UPLO, N, A, LDA, AF, LDAF,
611 $ 0, S, INFO, WORK, IWORK )
615 * Cap the error at 1.0.
617 IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
618 $ .AND. ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .GT. 1.0 )
619 $ ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0
621 * Threshold the error (see LAWN).
623 IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
624 ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = 1.0
625 ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 0.0
626 IF ( INFO .LE. N ) INFO = N + J
627 ELSE IF ( ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) .LT. ERR_LBND )
629 ERR_BNDS_NORM( J, LA_LINRX_ERR_I ) = ERR_LBND
630 ERR_BNDS_NORM( J, LA_LINRX_TRUST_I ) = 1.0
633 * Save the condition number.
635 IF (N_ERR_BNDS .GE. LA_LINRX_RCOND_I) THEN
636 ERR_BNDS_NORM( J, LA_LINRX_RCOND_I ) = RCOND_TMP
641 IF ( N_ERR_BNDS .GE. 1 .AND. N_NORMS .GE. 2 ) THEN
643 * Compute componentwise condition number cond(A*diag(Y(:,J))) for
644 * each right-hand side using the current solution as an estimate of
645 * the true solution. If the componentwise error estimate is too
646 * large, then the solution is a lousy estimate of truth and the
647 * estimated RCOND may be too optimistic. To avoid misleading users,
648 * the inverse condition number is set to 0.0 when the estimated
649 * cwise error is at least CWISE_WRONG.
651 CWISE_WRONG = SQRT( SLAMCH( 'Epsilon' ) )
653 IF (ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .LT. CWISE_WRONG )
655 RCOND_TMP = SLA_PORCOND( UPLO, N, A, LDA, AF, LDAF, 1,
656 $ X( 1, J ), INFO, WORK, IWORK )
661 * Cap the error at 1.0.
663 IF ( N_ERR_BNDS .GE. LA_LINRX_ERR_I
664 $ .AND. ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) .GT. 1.0 )
665 $ ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0
667 * Threshold the error (see LAWN).
669 IF ( RCOND_TMP .LT. ILLRCOND_THRESH ) THEN
670 ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = 1.0
671 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 0.0
672 IF ( PARAMS( LA_LINRX_CWISE_I ) .EQ. 1.0
673 $ .AND. INFO.LT.N + J ) INFO = N + J
674 ELSE IF ( ERR_BNDS_COMP( J, LA_LINRX_ERR_I )
675 $ .LT. ERR_LBND ) THEN
676 ERR_BNDS_COMP( J, LA_LINRX_ERR_I ) = ERR_LBND
677 ERR_BNDS_COMP( J, LA_LINRX_TRUST_I ) = 1.0
680 * Save the condition number.
682 IF ( N_ERR_BNDS .GE. LA_LINRX_RCOND_I ) THEN
683 ERR_BNDS_COMP( J, LA_LINRX_RCOND_I ) = RCOND_TMP