3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SPBSTF + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spbstf.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spbstf.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spbstf.f">
21 * SUBROUTINE SPBSTF( UPLO, N, KD, AB, LDAB, INFO )
23 * .. Scalar Arguments ..
25 * INTEGER INFO, KD, LDAB, N
27 * .. Array Arguments ..
37 *> SPBSTF computes a split Cholesky factorization of a real
38 *> symmetric positive definite band matrix A.
40 *> This routine is designed to be used in conjunction with SSBGST.
42 *> The factorization has the form A = S**T*S where S is a band matrix
43 *> of the same bandwidth as A and the following structure:
48 *> where U is upper triangular of order m = (n+kd)/2, and L is lower
49 *> triangular of order n-m.
57 *> UPLO is CHARACTER*1
58 *> = 'U': Upper triangle of A is stored;
59 *> = 'L': Lower triangle of A is stored.
65 *> The order of the matrix A. N >= 0.
71 *> The number of superdiagonals of the matrix A if UPLO = 'U',
72 *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
77 *> AB is REAL array, dimension (LDAB,N)
78 *> On entry, the upper or lower triangle of the symmetric band
79 *> matrix A, stored in the first kd+1 rows of the array. The
80 *> j-th column of A is stored in the j-th column of the array AB
82 *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
83 *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
85 *> On exit, if INFO = 0, the factor S from the split Cholesky
86 *> factorization A = S**T*S. See Further Details.
92 *> The leading dimension of the array AB. LDAB >= KD+1.
98 *> = 0: successful exit
99 *> < 0: if INFO = -i, the i-th argument had an illegal value
100 *> > 0: if INFO = i, the factorization could not be completed,
101 *> because the updated element a(i,i) was negative; the
102 *> matrix A is not positive definite.
108 *> \author Univ. of Tennessee
109 *> \author Univ. of California Berkeley
110 *> \author Univ. of Colorado Denver
113 *> \date November 2011
115 *> \ingroup realOTHERcomputational
117 *> \par Further Details:
118 * =====================
122 *> The band storage scheme is illustrated by the following example, when
125 *> S = ( s11 s12 s13 )
133 *> If UPLO = 'U', the array AB holds:
135 *> on entry: on exit:
137 *> * * a13 a24 a35 a46 a57 * * s13 s24 s53 s64 s75
138 *> * a12 a23 a34 a45 a56 a67 * s12 s23 s34 s54 s65 s76
139 *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
141 *> If UPLO = 'L', the array AB holds:
143 *> on entry: on exit:
145 *> a11 a22 a33 a44 a55 a66 a77 s11 s22 s33 s44 s55 s66 s77
146 *> a21 a32 a43 a54 a65 a76 * s12 s23 s34 s54 s65 s76 *
147 *> a31 a42 a53 a64 a64 * * s13 s24 s53 s64 s75 * *
149 *> Array elements marked * are not used by the routine.
152 * =====================================================================
153 SUBROUTINE SPBSTF( UPLO, N, KD, AB, LDAB, INFO )
155 * -- LAPACK computational routine (version 3.4.0) --
156 * -- LAPACK is a software package provided by Univ. of Tennessee, --
157 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
160 * .. Scalar Arguments ..
162 INTEGER INFO, KD, LDAB, N
164 * .. Array Arguments ..
168 * =====================================================================
172 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
174 * .. Local Scalars ..
176 INTEGER J, KLD, KM, M
179 * .. External Functions ..
183 * .. External Subroutines ..
184 EXTERNAL SSCAL, SSYR, XERBLA
186 * .. Intrinsic Functions ..
187 INTRINSIC MAX, MIN, SQRT
189 * .. Executable Statements ..
191 * Test the input parameters.
194 UPPER = LSAME( UPLO, 'U' )
195 IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
197 ELSE IF( N.LT.0 ) THEN
199 ELSE IF( KD.LT.0 ) THEN
201 ELSE IF( LDAB.LT.KD+1 ) THEN
205 CALL XERBLA( 'SPBSTF', -INFO )
209 * Quick return if possible
214 KLD = MAX( 1, LDAB-1 )
216 * Set the splitting point m.
222 * Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
224 DO 10 J = N, M + 1, -1
226 * Compute s(j,j) and test for non-positive-definiteness.
235 * Compute elements j-km:j-1 of the j-th column and update the
236 * the leading submatrix within the band.
238 CALL SSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
239 CALL SSYR( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
240 $ AB( KD+1, J-KM ), KLD )
243 * Factorize the updated submatrix A(1:m,1:m) as U**T*U.
247 * Compute s(j,j) and test for non-positive-definiteness.
256 * Compute elements j+1:j+km of the j-th row and update the
257 * trailing submatrix within the band.
260 CALL SSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
261 CALL SSYR( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
262 $ AB( KD+1, J+1 ), KLD )
267 * Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
269 DO 30 J = N, M + 1, -1
271 * Compute s(j,j) and test for non-positive-definiteness.
280 * Compute elements j-km:j-1 of the j-th row and update the
281 * trailing submatrix within the band.
283 CALL SSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
284 CALL SSYR( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
285 $ AB( 1, J-KM ), KLD )
288 * Factorize the updated submatrix A(1:m,1:m) as U**T*U.
292 * Compute s(j,j) and test for non-positive-definiteness.
301 * Compute elements j+1:j+km of the j-th column and update the
302 * trailing submatrix within the band.
305 CALL SSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
306 CALL SSYR( 'Lower', KM, -ONE, AB( 2, J ), 1,
307 $ AB( 1, J+1 ), KLD )