3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SORMBR + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormbr.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormbr.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormbr.f">
21 * SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
22 * LDC, WORK, LWORK, INFO )
24 * .. Scalar Arguments ..
25 * CHARACTER SIDE, TRANS, VECT
26 * INTEGER INFO, K, LDA, LDC, LWORK, M, N
28 * .. Array Arguments ..
29 * REAL A( LDA, * ), C( LDC, * ), TAU( * ),
39 *> If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C
41 *> SIDE = 'L' SIDE = 'R'
42 *> TRANS = 'N': Q * C C * Q
43 *> TRANS = 'T': Q**T * C C * Q**T
45 *> If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C
47 *> SIDE = 'L' SIDE = 'R'
48 *> TRANS = 'N': P * C C * P
49 *> TRANS = 'T': P**T * C C * P**T
51 *> Here Q and P**T are the orthogonal matrices determined by SGEBRD when
52 *> reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
53 *> P**T are defined as products of elementary reflectors H(i) and G(i)
56 *> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
57 *> order of the orthogonal matrix Q or P**T that is applied.
59 *> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
60 *> if nq >= k, Q = H(1) H(2) . . . H(k);
61 *> if nq < k, Q = H(1) H(2) . . . H(nq-1).
63 *> If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
64 *> if k < nq, P = G(1) G(2) . . . G(k);
65 *> if k >= nq, P = G(1) G(2) . . . G(nq-1).
73 *> VECT is CHARACTER*1
74 *> = 'Q': apply Q or Q**T;
75 *> = 'P': apply P or P**T.
80 *> SIDE is CHARACTER*1
81 *> = 'L': apply Q, Q**T, P or P**T from the Left;
82 *> = 'R': apply Q, Q**T, P or P**T from the Right.
87 *> TRANS is CHARACTER*1
88 *> = 'N': No transpose, apply Q or P;
89 *> = 'T': Transpose, apply Q**T or P**T.
95 *> The number of rows of the matrix C. M >= 0.
101 *> The number of columns of the matrix C. N >= 0.
107 *> If VECT = 'Q', the number of columns in the original
108 *> matrix reduced by SGEBRD.
109 *> If VECT = 'P', the number of rows in the original
110 *> matrix reduced by SGEBRD.
116 *> A is REAL array, dimension
117 *> (LDA,min(nq,K)) if VECT = 'Q'
118 *> (LDA,nq) if VECT = 'P'
119 *> The vectors which define the elementary reflectors H(i) and
120 *> G(i), whose products determine the matrices Q and P, as
121 *> returned by SGEBRD.
127 *> The leading dimension of the array A.
128 *> If VECT = 'Q', LDA >= max(1,nq);
129 *> if VECT = 'P', LDA >= max(1,min(nq,K)).
134 *> TAU is REAL array, dimension (min(nq,K))
135 *> TAU(i) must contain the scalar factor of the elementary
136 *> reflector H(i) or G(i) which determines Q or P, as returned
137 *> by SGEBRD in the array argument TAUQ or TAUP.
142 *> C is REAL array, dimension (LDC,N)
143 *> On entry, the M-by-N matrix C.
144 *> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
145 *> or P*C or P**T*C or C*P or C*P**T.
151 *> The leading dimension of the array C. LDC >= max(1,M).
156 *> WORK is REAL array, dimension (MAX(1,LWORK))
157 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
163 *> The dimension of the array WORK.
164 *> If SIDE = 'L', LWORK >= max(1,N);
165 *> if SIDE = 'R', LWORK >= max(1,M).
166 *> For optimum performance LWORK >= N*NB if SIDE = 'L', and
167 *> LWORK >= M*NB if SIDE = 'R', where NB is the optimal
170 *> If LWORK = -1, then a workspace query is assumed; the routine
171 *> only calculates the optimal size of the WORK array, returns
172 *> this value as the first entry of the WORK array, and no error
173 *> message related to LWORK is issued by XERBLA.
179 *> = 0: successful exit
180 *> < 0: if INFO = -i, the i-th argument had an illegal value
186 *> \author Univ. of Tennessee
187 *> \author Univ. of California Berkeley
188 *> \author Univ. of Colorado Denver
191 *> \date November 2011
193 *> \ingroup realOTHERcomputational
195 * =====================================================================
196 SUBROUTINE SORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C,
197 $ LDC, WORK, LWORK, INFO )
199 * -- LAPACK computational routine (version 3.4.0) --
200 * -- LAPACK is a software package provided by Univ. of Tennessee, --
201 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
204 * .. Scalar Arguments ..
205 CHARACTER SIDE, TRANS, VECT
206 INTEGER INFO, K, LDA, LDC, LWORK, M, N
208 * .. Array Arguments ..
209 REAL A( LDA, * ), C( LDC, * ), TAU( * ),
213 * =====================================================================
215 * .. Local Scalars ..
216 LOGICAL APPLYQ, LEFT, LQUERY, NOTRAN
218 INTEGER I1, I2, IINFO, LWKOPT, MI, NB, NI, NQ, NW
220 * .. External Functions ..
223 EXTERNAL ILAENV, LSAME
225 * .. External Subroutines ..
226 EXTERNAL SORMLQ, SORMQR, XERBLA
228 * .. Intrinsic Functions ..
231 * .. Executable Statements ..
233 * Test the input arguments
236 APPLYQ = LSAME( VECT, 'Q' )
237 LEFT = LSAME( SIDE, 'L' )
238 NOTRAN = LSAME( TRANS, 'N' )
239 LQUERY = ( LWORK.EQ.-1 )
241 * NQ is the order of Q or P and NW is the minimum dimension of WORK
250 IF( .NOT.APPLYQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
252 ELSE IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
254 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
256 ELSE IF( M.LT.0 ) THEN
258 ELSE IF( N.LT.0 ) THEN
260 ELSE IF( K.LT.0 ) THEN
262 ELSE IF( ( APPLYQ .AND. LDA.LT.MAX( 1, NQ ) ) .OR.
263 $ ( .NOT.APPLYQ .AND. LDA.LT.MAX( 1, MIN( NQ, K ) ) ) )
266 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
268 ELSE IF( LWORK.LT.MAX( 1, NW ) .AND. .NOT.LQUERY ) THEN
275 NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M-1, N, M-1,
278 NB = ILAENV( 1, 'SORMQR', SIDE // TRANS, M, N-1, N-1,
283 NB = ILAENV( 1, 'SORMLQ', SIDE // TRANS, M-1, N, M-1,
286 NB = ILAENV( 1, 'SORMLQ', SIDE // TRANS, M, N-1, N-1,
290 LWKOPT = MAX( 1, NW )*NB
295 CALL XERBLA( 'SORMBR', -INFO )
297 ELSE IF( LQUERY ) THEN
301 * Quick return if possible
304 IF( M.EQ.0 .OR. N.EQ.0 )
313 * Q was determined by a call to SGEBRD with nq >= k
315 CALL SORMQR( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
316 $ WORK, LWORK, IINFO )
317 ELSE IF( NQ.GT.1 ) THEN
319 * Q was determined by a call to SGEBRD with nq < k
332 CALL SORMQR( SIDE, TRANS, MI, NI, NQ-1, A( 2, 1 ), LDA, TAU,
333 $ C( I1, I2 ), LDC, WORK, LWORK, IINFO )
346 * P was determined by a call to SGEBRD with nq > k
348 CALL SORMLQ( SIDE, TRANST, M, N, K, A, LDA, TAU, C, LDC,
349 $ WORK, LWORK, IINFO )
350 ELSE IF( NQ.GT.1 ) THEN
352 * P was determined by a call to SGEBRD with nq <= k
365 CALL SORMLQ( SIDE, TRANST, MI, NI, NQ-1, A( 1, 2 ), LDA,
366 $ TAU, C( I1, I2 ), LDC, WORK, LWORK, IINFO )