3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SORBDB3 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb3.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb3.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb3.f">
21 * SUBROUTINE SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
22 * TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
24 * .. Scalar Arguments ..
25 * INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
27 * .. Array Arguments ..
28 * REAL PHI(*), THETA(*)
29 * REAL TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
30 * $ X11(LDX11,*), X21(LDX21,*)
39 *> SORBDB3 simultaneously bidiagonalizes the blocks of a tall and skinny
40 *> matrix X with orthonomal columns:
43 *> [ X11 ] [ P1 | ] [ 0 ]
44 *> [-----] = [---------] [-----] Q1**T .
45 *> [ X21 ] [ | P2 ] [ B21 ]
48 *> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-P must be no larger than P,
49 *> Q, or M-Q. Routines SORBDB1, SORBDB2, and SORBDB4 handle cases in
50 *> which M-P is not the minimum dimension.
52 *> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
53 *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
54 *> Householder vectors.
56 *> B11 and B12 are (M-P)-by-(M-P) bidiagonal matrices represented
57 *> implicitly by angles THETA, PHI.
67 *> The number of rows X11 plus the number of rows in X21.
73 *> The number of rows in X11. 0 <= P <= M. M-P <= min(P,Q,M-Q).
79 *> The number of columns in X11 and X21. 0 <= Q <= M.
84 *> X11 is REAL array, dimension (LDX11,Q)
85 *> On entry, the top block of the matrix X to be reduced. On
86 *> exit, the columns of tril(X11) specify reflectors for P1 and
87 *> the rows of triu(X11,1) specify reflectors for Q1.
93 *> The leading dimension of X11. LDX11 >= P.
98 *> X21 is REAL array, dimension (LDX21,Q)
99 *> On entry, the bottom block of the matrix X to be reduced. On
100 *> exit, the columns of tril(X21) specify reflectors for P2.
106 *> The leading dimension of X21. LDX21 >= M-P.
111 *> THETA is REAL array, dimension (Q)
112 *> The entries of the bidiagonal blocks B11, B21 are defined by
113 *> THETA and PHI. See Further Details.
118 *> PHI is REAL array, dimension (Q-1)
119 *> The entries of the bidiagonal blocks B11, B21 are defined by
120 *> THETA and PHI. See Further Details.
125 *> TAUP1 is REAL array, dimension (P)
126 *> The scalar factors of the elementary reflectors that define
132 *> TAUP2 is REAL array, dimension (M-P)
133 *> The scalar factors of the elementary reflectors that define
139 *> TAUQ1 is REAL array, dimension (Q)
140 *> The scalar factors of the elementary reflectors that define
146 *> WORK is REAL array, dimension (LWORK)
152 *> The dimension of the array WORK. LWORK >= M-Q.
154 *> If LWORK = -1, then a workspace query is assumed; the routine
155 *> only calculates the optimal size of the WORK array, returns
156 *> this value as the first entry of the WORK array, and no error
157 *> message related to LWORK is issued by XERBLA.
163 *> = 0: successful exit.
164 *> < 0: if INFO = -i, the i-th argument had an illegal value.
171 *> \author Univ. of Tennessee
172 *> \author Univ. of California Berkeley
173 *> \author Univ. of Colorado Denver
178 *> \ingroup realOTHERcomputational
180 *> \par Further Details:
181 * =====================
185 *> The upper-bidiagonal blocks B11, B21 are represented implicitly by
186 *> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
187 *> in each bidiagonal band is a product of a sine or cosine of a THETA
188 *> with a sine or cosine of a PHI. See [1] or SORCSD for details.
190 *> P1, P2, and Q1 are represented as products of elementary reflectors.
191 *> See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR
198 *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
199 *> Algorithms, 50(1):33-65, 2009.
201 * =====================================================================
202 SUBROUTINE SORBDB3( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
203 $ TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
205 * -- LAPACK computational routine (version 3.6.1) --
206 * -- LAPACK is a software package provided by Univ. of Tennessee, --
207 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
210 * .. Scalar Arguments ..
211 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
213 * .. Array Arguments ..
214 REAL PHI(*), THETA(*)
215 REAL TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
216 $ X11(LDX11,*), X21(LDX21,*)
219 * ====================================================================
223 PARAMETER ( ONE = 1.0E0 )
225 * .. Local Scalars ..
227 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
231 * .. External Subroutines ..
232 EXTERNAL SLARF, SLARFGP, SORBDB5, SROT, XERBLA
234 * .. External Functions ..
238 * .. Intrinsic Function ..
239 INTRINSIC ATAN2, COS, MAX, SIN, SQRT
241 * .. Executable Statements ..
243 * Test input arguments
246 LQUERY = LWORK .EQ. -1
250 ELSE IF( 2*P .LT. M .OR. P .GT. M ) THEN
252 ELSE IF( Q .LT. M-P .OR. M-Q .LT. M-P ) THEN
254 ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
256 ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
262 IF( INFO .EQ. 0 ) THEN
264 LLARF = MAX( P, M-P-1, Q-1 )
267 LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
270 IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
274 IF( INFO .NE. 0 ) THEN
275 CALL XERBLA( 'SORBDB3', -INFO )
277 ELSE IF( LQUERY ) THEN
281 * Reduce rows 1, ..., M-P of X11 and X21
286 CALL SROT( Q-I+1, X11(I-1,I), LDX11, X21(I,I), LDX11, C, S )
289 CALL SLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) )
292 CALL SLARF( 'R', P-I+1, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
293 $ X11(I,I), LDX11, WORK(ILARF) )
294 CALL SLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
295 $ X21(I+1,I), LDX21, WORK(ILARF) )
296 C = SQRT( SNRM2( P-I+1, X11(I,I), 1 )**2
297 $ + SNRM2( M-P-I, X21(I+1,I), 1 )**2 )
298 THETA(I) = ATAN2( S, C )
300 CALL SORBDB5( P-I+1, M-P-I, Q-I, X11(I,I), 1, X21(I+1,I), 1,
301 $ X11(I,I+1), LDX11, X21(I+1,I+1), LDX21,
302 $ WORK(IORBDB5), LORBDB5, CHILDINFO )
303 CALL SLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
304 IF( I .LT. M-P ) THEN
305 CALL SLARFGP( M-P-I, X21(I+1,I), X21(I+2,I), 1, TAUP2(I) )
306 PHI(I) = ATAN2( X21(I+1,I), X11(I,I) )
310 CALL SLARF( 'L', M-P-I, Q-I, X21(I+1,I), 1, TAUP2(I),
311 $ X21(I+1,I+1), LDX21, WORK(ILARF) )
314 CALL SLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), X11(I,I+1),
315 $ LDX11, WORK(ILARF) )
319 * Reduce the bottom-right portion of X11 to the identity matrix
322 CALL SLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
324 CALL SLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), X11(I,I+1),
325 $ LDX11, WORK(ILARF) )