1 *> \brief \b SLAEDA used by sstedc. Computes the Z vector determining the rank-one modification of the diagonal matrix. Used when the original matrix is dense.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SLAEDA + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaeda.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaeda.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaeda.f">
21 * SUBROUTINE SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
22 * GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
24 * .. Scalar Arguments ..
25 * INTEGER CURLVL, CURPBM, INFO, N, TLVLS
27 * .. Array Arguments ..
28 * INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
29 * $ PRMPTR( * ), QPTR( * )
30 * REAL GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
39 *> SLAEDA computes the Z vector corresponding to the merge step in the
40 *> CURLVLth step of the merge process with TLVLS steps for the CURPBMth
50 *> The dimension of the symmetric tridiagonal matrix. N >= 0.
56 *> The total number of merging levels in the overall divide and
63 *> The current level in the overall merge routine,
64 *> 0 <= curlvl <= tlvls.
70 *> The current problem in the current level in the overall
71 *> merge routine (counting from upper left to lower right).
76 *> PRMPTR is INTEGER array, dimension (N lg N)
77 *> Contains a list of pointers which indicate where in PERM a
78 *> level's permutation is stored. PRMPTR(i+1) - PRMPTR(i)
79 *> indicates the size of the permutation and incidentally the
80 *> size of the full, non-deflated problem.
85 *> PERM is INTEGER array, dimension (N lg N)
86 *> Contains the permutations (from deflation and sorting) to be
87 *> applied to each eigenblock.
92 *> GIVPTR is INTEGER array, dimension (N lg N)
93 *> Contains a list of pointers which indicate where in GIVCOL a
94 *> level's Givens rotations are stored. GIVPTR(i+1) - GIVPTR(i)
95 *> indicates the number of Givens rotations.
100 *> GIVCOL is INTEGER array, dimension (2, N lg N)
101 *> Each pair of numbers indicates a pair of columns to take place
102 *> in a Givens rotation.
107 *> GIVNUM is REAL array, dimension (2, N lg N)
108 *> Each number indicates the S value to be used in the
109 *> corresponding Givens rotation.
114 *> Q is REAL array, dimension (N**2)
115 *> Contains the square eigenblocks from previous levels, the
116 *> starting positions for blocks are given by QPTR.
121 *> QPTR is INTEGER array, dimension (N+2)
122 *> Contains a list of pointers which indicate where in Q an
123 *> eigenblock is stored. SQRT( QPTR(i+1) - QPTR(i) ) indicates
124 *> the size of the block.
129 *> Z is REAL array, dimension (N)
130 *> On output this vector contains the updating vector (the last
131 *> row of the first sub-eigenvector matrix and the first row of
132 *> the second sub-eigenvector matrix).
137 *> ZTEMP is REAL array, dimension (N)
143 *> = 0: successful exit.
144 *> < 0: if INFO = -i, the i-th argument had an illegal value.
150 *> \author Univ. of Tennessee
151 *> \author Univ. of California Berkeley
152 *> \author Univ. of Colorado Denver
155 *> \date September 2012
157 *> \ingroup auxOTHERcomputational
159 *> \par Contributors:
162 *> Jeff Rutter, Computer Science Division, University of California
165 * =====================================================================
166 SUBROUTINE SLAEDA( N, TLVLS, CURLVL, CURPBM, PRMPTR, PERM, GIVPTR,
167 $ GIVCOL, GIVNUM, Q, QPTR, Z, ZTEMP, INFO )
169 * -- LAPACK computational routine (version 3.4.2) --
170 * -- LAPACK is a software package provided by Univ. of Tennessee, --
171 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
174 * .. Scalar Arguments ..
175 INTEGER CURLVL, CURPBM, INFO, N, TLVLS
177 * .. Array Arguments ..
178 INTEGER GIVCOL( 2, * ), GIVPTR( * ), PERM( * ),
179 $ PRMPTR( * ), QPTR( * )
180 REAL GIVNUM( 2, * ), Q( * ), Z( * ), ZTEMP( * )
183 * =====================================================================
187 PARAMETER ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0 )
189 * .. Local Scalars ..
190 INTEGER BSIZ1, BSIZ2, CURR, I, K, MID, PSIZ1, PSIZ2,
193 * .. External Subroutines ..
194 EXTERNAL SCOPY, SGEMV, SROT, XERBLA
196 * .. Intrinsic Functions ..
197 INTRINSIC INT, REAL, SQRT
199 * .. Executable Statements ..
201 * Test the input parameters.
209 CALL XERBLA( 'SLAEDA', -INFO )
213 * Quick return if possible
218 * Determine location of first number in second half.
222 * Gather last/first rows of appropriate eigenblocks into center of Z
226 * Determine location of lowest level subproblem in the full storage
229 CURR = PTR + CURPBM*2**CURLVL + 2**( CURLVL-1 ) - 1
231 * Determine size of these matrices. We add HALF to the value of
232 * the SQRT in case the machine underestimates one of these square
235 BSIZ1 = INT( HALF+SQRT( REAL( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
236 BSIZ2 = INT( HALF+SQRT( REAL( QPTR( CURR+2 )-QPTR( CURR+1 ) ) ) )
237 DO 10 K = 1, MID - BSIZ1 - 1
240 CALL SCOPY( BSIZ1, Q( QPTR( CURR )+BSIZ1-1 ), BSIZ1,
241 $ Z( MID-BSIZ1 ), 1 )
242 CALL SCOPY( BSIZ2, Q( QPTR( CURR+1 ) ), BSIZ2, Z( MID ), 1 )
243 DO 20 K = MID + BSIZ2, N
247 * Loop through remaining levels 1 -> CURLVL applying the Givens
248 * rotations and permutation and then multiplying the center matrices
249 * against the current Z.
252 DO 70 K = 1, CURLVL - 1
253 CURR = PTR + CURPBM*2**( CURLVL-K ) + 2**( CURLVL-K-1 ) - 1
254 PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
255 PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
258 * Apply Givens at CURR and CURR+1
260 DO 30 I = GIVPTR( CURR ), GIVPTR( CURR+1 ) - 1
261 CALL SROT( 1, Z( ZPTR1+GIVCOL( 1, I )-1 ), 1,
262 $ Z( ZPTR1+GIVCOL( 2, I )-1 ), 1, GIVNUM( 1, I ),
265 DO 40 I = GIVPTR( CURR+1 ), GIVPTR( CURR+2 ) - 1
266 CALL SROT( 1, Z( MID-1+GIVCOL( 1, I ) ), 1,
267 $ Z( MID-1+GIVCOL( 2, I ) ), 1, GIVNUM( 1, I ),
270 PSIZ1 = PRMPTR( CURR+1 ) - PRMPTR( CURR )
271 PSIZ2 = PRMPTR( CURR+2 ) - PRMPTR( CURR+1 )
272 DO 50 I = 0, PSIZ1 - 1
273 ZTEMP( I+1 ) = Z( ZPTR1+PERM( PRMPTR( CURR )+I )-1 )
275 DO 60 I = 0, PSIZ2 - 1
276 ZTEMP( PSIZ1+I+1 ) = Z( MID+PERM( PRMPTR( CURR+1 )+I )-1 )
279 * Multiply Blocks at CURR and CURR+1
281 * Determine size of these matrices. We add HALF to the value of
282 * the SQRT in case the machine underestimates one of these
285 BSIZ1 = INT( HALF+SQRT( REAL( QPTR( CURR+1 )-QPTR( CURR ) ) ) )
286 BSIZ2 = INT( HALF+SQRT( REAL( QPTR( CURR+2 )-QPTR( CURR+
288 IF( BSIZ1.GT.0 ) THEN
289 CALL SGEMV( 'T', BSIZ1, BSIZ1, ONE, Q( QPTR( CURR ) ),
290 $ BSIZ1, ZTEMP( 1 ), 1, ZERO, Z( ZPTR1 ), 1 )
292 CALL SCOPY( PSIZ1-BSIZ1, ZTEMP( BSIZ1+1 ), 1, Z( ZPTR1+BSIZ1 ),
294 IF( BSIZ2.GT.0 ) THEN
295 CALL SGEMV( 'T', BSIZ2, BSIZ2, ONE, Q( QPTR( CURR+1 ) ),
296 $ BSIZ2, ZTEMP( PSIZ1+1 ), 1, ZERO, Z( MID ), 1 )
298 CALL SCOPY( PSIZ2-BSIZ2, ZTEMP( PSIZ1+BSIZ2+1 ), 1,
299 $ Z( MID+BSIZ2 ), 1 )
301 PTR = PTR + 2**( TLVLS-K )