1 *> \brief \b SLAEBZ computes the number of eigenvalues of a real symmetric tridiagonal matrix which are less than or equal to a given value, and performs other tasks required by the routine sstebz.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SLAEBZ + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaebz.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaebz.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaebz.f">
21 * SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
22 * RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
23 * NAB, WORK, IWORK, INFO )
25 * .. Scalar Arguments ..
26 * INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
27 * REAL ABSTOL, PIVMIN, RELTOL
29 * .. Array Arguments ..
30 * INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * )
31 * REAL AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
41 *> SLAEBZ contains the iteration loops which compute and use the
42 *> function N(w), which is the count of eigenvalues of a symmetric
43 *> tridiagonal matrix T less than or equal to its argument w. It
44 *> performs a choice of two types of loops:
46 *> IJOB=1, followed by
47 *> IJOB=2: It takes as input a list of intervals and returns a list of
48 *> sufficiently small intervals whose union contains the same
49 *> eigenvalues as the union of the original intervals.
50 *> The input intervals are (AB(j,1),AB(j,2)], j=1,...,MINP.
51 *> The output interval (AB(j,1),AB(j,2)] will contain
52 *> eigenvalues NAB(j,1)+1,...,NAB(j,2), where 1 <= j <= MOUT.
54 *> IJOB=3: It performs a binary search in each input interval
55 *> (AB(j,1),AB(j,2)] for a point w(j) such that
56 *> N(w(j))=NVAL(j), and uses C(j) as the starting point of
57 *> the search. If such a w(j) is found, then on output
58 *> AB(j,1)=AB(j,2)=w. If no such w(j) is found, then on output
59 *> (AB(j,1),AB(j,2)] will be a small interval containing the
60 *> point where N(w) jumps through NVAL(j), unless that point
61 *> lies outside the initial interval.
63 *> Note that the intervals are in all cases half-open intervals,
64 *> i.e., of the form (a,b] , which includes b but not a .
66 *> To avoid underflow, the matrix should be scaled so that its largest
67 *> element is no greater than overflow**(1/2) * underflow**(1/4)
68 *> in absolute value. To assure the most accurate computation
69 *> of small eigenvalues, the matrix should be scaled to be
70 *> not much smaller than that, either.
72 *> See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
73 *> Matrix", Report CS41, Computer Science Dept., Stanford
74 *> University, July 21, 1966
76 *> Note: the arguments are, in general, *not* checked for unreasonable
86 *> Specifies what is to be done:
87 *> = 1: Compute NAB for the initial intervals.
88 *> = 2: Perform bisection iteration to find eigenvalues of T.
89 *> = 3: Perform bisection iteration to invert N(w), i.e.,
90 *> to find a point which has a specified number of
91 *> eigenvalues of T to its left.
92 *> Other values will cause SLAEBZ to return with INFO=-1.
98 *> The maximum number of "levels" of bisection to be
99 *> performed, i.e., an interval of width W will not be made
100 *> smaller than 2^(-NITMAX) * W. If not all intervals
101 *> have converged after NITMAX iterations, then INFO is set
102 *> to the number of non-converged intervals.
108 *> The dimension n of the tridiagonal matrix T. It must be at
115 *> The maximum number of intervals. If more than MMAX intervals
116 *> are generated, then SLAEBZ will quit with INFO=MMAX+1.
122 *> The initial number of intervals. It may not be greater than
129 *> The smallest number of intervals that should be processed
130 *> using a vector loop. If zero, then only the scalar loop
137 *> The minimum (absolute) width of an interval. When an
138 *> interval is narrower than ABSTOL, or than RELTOL times the
139 *> larger (in magnitude) endpoint, then it is considered to be
140 *> sufficiently small, i.e., converged. This must be at least
147 *> The minimum relative width of an interval. When an interval
148 *> is narrower than ABSTOL, or than RELTOL times the larger (in
149 *> magnitude) endpoint, then it is considered to be
150 *> sufficiently small, i.e., converged. Note: this should
151 *> always be at least radix*machine epsilon.
157 *> The minimum absolute value of a "pivot" in the Sturm
159 *> This must be at least max |e(j)**2|*safe_min and at
160 *> least safe_min, where safe_min is at least
161 *> the smallest number that can divide one without overflow.
166 *> D is REAL array, dimension (N)
167 *> The diagonal elements of the tridiagonal matrix T.
172 *> E is REAL array, dimension (N)
173 *> The offdiagonal elements of the tridiagonal matrix T in
174 *> positions 1 through N-1. E(N) is arbitrary.
179 *> E2 is REAL array, dimension (N)
180 *> The squares of the offdiagonal elements of the tridiagonal
181 *> matrix T. E2(N) is ignored.
184 *> \param[in,out] NVAL
186 *> NVAL is INTEGER array, dimension (MINP)
187 *> If IJOB=1 or 2, not referenced.
188 *> If IJOB=3, the desired values of N(w). The elements of NVAL
189 *> will be reordered to correspond with the intervals in AB.
190 *> Thus, NVAL(j) on output will not, in general be the same as
191 *> NVAL(j) on input, but it will correspond with the interval
192 *> (AB(j,1),AB(j,2)] on output.
197 *> AB is REAL array, dimension (MMAX,2)
198 *> The endpoints of the intervals. AB(j,1) is a(j), the left
199 *> endpoint of the j-th interval, and AB(j,2) is b(j), the
200 *> right endpoint of the j-th interval. The input intervals
201 *> will, in general, be modified, split, and reordered by the
207 *> C is REAL array, dimension (MMAX)
208 *> If IJOB=1, ignored.
209 *> If IJOB=2, workspace.
210 *> If IJOB=3, then on input C(j) should be initialized to the
211 *> first search point in the binary search.
217 *> If IJOB=1, the number of eigenvalues in the intervals.
218 *> If IJOB=2 or 3, the number of intervals output.
219 *> If IJOB=3, MOUT will equal MINP.
222 *> \param[in,out] NAB
224 *> NAB is INTEGER array, dimension (MMAX,2)
225 *> If IJOB=1, then on output NAB(i,j) will be set to N(AB(i,j)).
226 *> If IJOB=2, then on input, NAB(i,j) should be set. It must
227 *> satisfy the condition:
228 *> N(AB(i,1)) <= NAB(i,1) <= NAB(i,2) <= N(AB(i,2)),
229 *> which means that in interval i only eigenvalues
230 *> NAB(i,1)+1,...,NAB(i,2) will be considered. Usually,
231 *> NAB(i,j)=N(AB(i,j)), from a previous call to SLAEBZ with
233 *> On output, NAB(i,j) will contain
234 *> max(na(k),min(nb(k),N(AB(i,j)))), where k is the index of
235 *> the input interval that the output interval
236 *> (AB(j,1),AB(j,2)] came from, and na(k) and nb(k) are the
237 *> the input values of NAB(k,1) and NAB(k,2).
238 *> If IJOB=3, then on output, NAB(i,j) contains N(AB(i,j)),
239 *> unless N(w) > NVAL(i) for all search points w , in which
240 *> case NAB(i,1) will not be modified, i.e., the output
241 *> value will be the same as the input value (modulo
242 *> reorderings -- see NVAL and AB), or unless N(w) < NVAL(i)
243 *> for all search points w , in which case NAB(i,2) will
244 *> not be modified. Normally, NAB should be set to some
245 *> distinctive value(s) before SLAEBZ is called.
250 *> WORK is REAL array, dimension (MMAX)
256 *> IWORK is INTEGER array, dimension (MMAX)
263 *> = 0: All intervals converged.
264 *> = 1--MMAX: The last INFO intervals did not converge.
265 *> = MMAX+1: More than MMAX intervals were generated.
271 *> \author Univ. of Tennessee
272 *> \author Univ. of California Berkeley
273 *> \author Univ. of Colorado Denver
276 *> \date September 2012
278 *> \ingroup OTHERauxiliary
280 *> \par Further Details:
281 * =====================
285 *> This routine is intended to be called only by other LAPACK
286 *> routines, thus the interface is less user-friendly. It is intended
289 *> (a) finding eigenvalues. In this case, SLAEBZ should have one or
290 *> more initial intervals set up in AB, and SLAEBZ should be called
291 *> with IJOB=1. This sets up NAB, and also counts the eigenvalues.
292 *> Intervals with no eigenvalues would usually be thrown out at
293 *> this point. Also, if not all the eigenvalues in an interval i
294 *> are desired, NAB(i,1) can be increased or NAB(i,2) decreased.
295 *> For example, set NAB(i,1)=NAB(i,2)-1 to get the largest
296 *> eigenvalue. SLAEBZ is then called with IJOB=2 and MMAX
297 *> no smaller than the value of MOUT returned by the call with
298 *> IJOB=1. After this (IJOB=2) call, eigenvalues NAB(i,1)+1
299 *> through NAB(i,2) are approximately AB(i,1) (or AB(i,2)) to the
300 *> tolerance specified by ABSTOL and RELTOL.
302 *> (b) finding an interval (a',b'] containing eigenvalues w(f),...,w(l).
303 *> In this case, start with a Gershgorin interval (a,b). Set up
304 *> AB to contain 2 search intervals, both initially (a,b). One
305 *> NVAL element should contain f-1 and the other should contain l
306 *> , while C should contain a and b, resp. NAB(i,1) should be -1
307 *> and NAB(i,2) should be N+1, to flag an error if the desired
308 *> interval does not lie in (a,b). SLAEBZ is then called with
309 *> IJOB=3. On exit, if w(f-1) < w(f), then one of the intervals --
310 *> j -- will have AB(j,1)=AB(j,2) and NAB(j,1)=NAB(j,2)=f-1, while
311 *> if, to the specified tolerance, w(f-k)=...=w(f+r), k > 0 and r
312 *> >= 0, then the interval will have N(AB(j,1))=NAB(j,1)=f-k and
313 *> N(AB(j,2))=NAB(j,2)=f+r. The cases w(l) < w(l+1) and
314 *> w(l-r)=...=w(l+k) are handled similarly.
317 * =====================================================================
318 SUBROUTINE SLAEBZ( IJOB, NITMAX, N, MMAX, MINP, NBMIN, ABSTOL,
319 $ RELTOL, PIVMIN, D, E, E2, NVAL, AB, C, MOUT,
320 $ NAB, WORK, IWORK, INFO )
322 * -- LAPACK auxiliary routine (version 3.4.2) --
323 * -- LAPACK is a software package provided by Univ. of Tennessee, --
324 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
327 * .. Scalar Arguments ..
328 INTEGER IJOB, INFO, MINP, MMAX, MOUT, N, NBMIN, NITMAX
329 REAL ABSTOL, PIVMIN, RELTOL
331 * .. Array Arguments ..
332 INTEGER IWORK( * ), NAB( MMAX, * ), NVAL( * )
333 REAL AB( MMAX, * ), C( * ), D( * ), E( * ), E2( * ),
337 * =====================================================================
341 PARAMETER ( ZERO = 0.0E0, TWO = 2.0E0,
342 $ HALF = 1.0E0 / TWO )
344 * .. Local Scalars ..
345 INTEGER ITMP1, ITMP2, J, JI, JIT, JP, KF, KFNEW, KL,
349 * .. Intrinsic Functions ..
350 INTRINSIC ABS, MAX, MIN
352 * .. Executable Statements ..
357 IF( IJOB.LT.1 .OR. IJOB.GT.3 ) THEN
366 * Compute the number of eigenvalues in the initial intervals.
371 TMP1 = D( 1 ) - AB( JI, JP )
372 IF( ABS( TMP1 ).LT.PIVMIN )
379 TMP1 = D( J ) - E2( J-1 ) / TMP1 - AB( JI, JP )
380 IF( ABS( TMP1 ).LT.PIVMIN )
383 $ NAB( JI, JP ) = NAB( JI, JP ) + 1
386 MOUT = MOUT + NAB( JI, 2 ) - NAB( JI, 1 )
391 * Initialize for loop
393 * KF and KL have the following meaning:
394 * Intervals 1,...,KF-1 have converged.
395 * Intervals KF,...,KL still need to be refined.
400 * If IJOB=2, initialize C.
401 * If IJOB=3, use the user-supplied starting point.
405 C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
411 DO 130 JIT = 1, NITMAX
413 * Loop over intervals
415 IF( KL-KF+1.GE.NBMIN .AND. NBMIN.GT.0 ) THEN
417 * Begin of Parallel Version of the loop
421 * Compute N(c), the number of eigenvalues less than c
423 WORK( JI ) = D( 1 ) - C( JI )
425 IF( WORK( JI ).LE.PIVMIN ) THEN
427 WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
431 WORK( JI ) = D( J ) - E2( J-1 ) / WORK( JI ) - C( JI )
432 IF( WORK( JI ).LE.PIVMIN ) THEN
433 IWORK( JI ) = IWORK( JI ) + 1
434 WORK( JI ) = MIN( WORK( JI ), -PIVMIN )
441 * IJOB=2: Choose all intervals containing eigenvalues.
446 * Insure that N(w) is monotone
448 IWORK( JI ) = MIN( NAB( JI, 2 ),
449 $ MAX( NAB( JI, 1 ), IWORK( JI ) ) )
451 * Update the Queue -- add intervals if both halves
452 * contain eigenvalues.
454 IF( IWORK( JI ).EQ.NAB( JI, 2 ) ) THEN
456 * No eigenvalue in the upper interval:
457 * just use the lower interval.
459 AB( JI, 2 ) = C( JI )
461 ELSE IF( IWORK( JI ).EQ.NAB( JI, 1 ) ) THEN
463 * No eigenvalue in the lower interval:
464 * just use the upper interval.
466 AB( JI, 1 ) = C( JI )
469 IF( KLNEW.LE.MMAX ) THEN
471 * Eigenvalue in both intervals -- add upper to
474 AB( KLNEW, 2 ) = AB( JI, 2 )
475 NAB( KLNEW, 2 ) = NAB( JI, 2 )
476 AB( KLNEW, 1 ) = C( JI )
477 NAB( KLNEW, 1 ) = IWORK( JI )
478 AB( JI, 2 ) = C( JI )
479 NAB( JI, 2 ) = IWORK( JI )
490 * IJOB=3: Binary search. Keep only the interval containing
494 IF( IWORK( JI ).LE.NVAL( JI ) ) THEN
495 AB( JI, 1 ) = C( JI )
496 NAB( JI, 1 ) = IWORK( JI )
498 IF( IWORK( JI ).GE.NVAL( JI ) ) THEN
499 AB( JI, 2 ) = C( JI )
500 NAB( JI, 2 ) = IWORK( JI )
507 * End of Parallel Version of the loop
509 * Begin of Serial Version of the loop
514 * Compute N(w), the number of eigenvalues less than w
519 IF( TMP2.LE.PIVMIN ) THEN
521 TMP2 = MIN( TMP2, -PIVMIN )
525 TMP2 = D( J ) - E2( J-1 ) / TMP2 - TMP1
526 IF( TMP2.LE.PIVMIN ) THEN
528 TMP2 = MIN( TMP2, -PIVMIN )
534 * IJOB=2: Choose all intervals containing eigenvalues.
536 * Insure that N(w) is monotone
538 ITMP1 = MIN( NAB( JI, 2 ),
539 $ MAX( NAB( JI, 1 ), ITMP1 ) )
541 * Update the Queue -- add intervals if both halves
542 * contain eigenvalues.
544 IF( ITMP1.EQ.NAB( JI, 2 ) ) THEN
546 * No eigenvalue in the upper interval:
547 * just use the lower interval.
551 ELSE IF( ITMP1.EQ.NAB( JI, 1 ) ) THEN
553 * No eigenvalue in the lower interval:
554 * just use the upper interval.
557 ELSE IF( KLNEW.LT.MMAX ) THEN
559 * Eigenvalue in both intervals -- add upper to queue.
562 AB( KLNEW, 2 ) = AB( JI, 2 )
563 NAB( KLNEW, 2 ) = NAB( JI, 2 )
564 AB( KLNEW, 1 ) = TMP1
565 NAB( KLNEW, 1 ) = ITMP1
574 * IJOB=3: Binary search. Keep only the interval
575 * containing w s.t. N(w) = NVAL
577 IF( ITMP1.LE.NVAL( JI ) ) THEN
581 IF( ITMP1.GE.NVAL( JI ) ) THEN
591 * Check for convergence
595 TMP1 = ABS( AB( JI, 2 )-AB( JI, 1 ) )
596 TMP2 = MAX( ABS( AB( JI, 2 ) ), ABS( AB( JI, 1 ) ) )
597 IF( TMP1.LT.MAX( ABSTOL, PIVMIN, RELTOL*TMP2 ) .OR.
598 $ NAB( JI, 1 ).GE.NAB( JI, 2 ) ) THEN
600 * Converged -- Swap with position KFNEW,
601 * then increment KFNEW
603 IF( JI.GT.KFNEW ) THEN
608 AB( JI, 1 ) = AB( KFNEW, 1 )
609 AB( JI, 2 ) = AB( KFNEW, 2 )
610 NAB( JI, 1 ) = NAB( KFNEW, 1 )
611 NAB( JI, 2 ) = NAB( KFNEW, 2 )
612 AB( KFNEW, 1 ) = TMP1
613 AB( KFNEW, 2 ) = TMP2
614 NAB( KFNEW, 1 ) = ITMP1
615 NAB( KFNEW, 2 ) = ITMP2
618 NVAL( JI ) = NVAL( KFNEW )
619 NVAL( KFNEW ) = ITMP1
630 C( JI ) = HALF*( AB( JI, 1 )+AB( JI, 2 ) )
633 * If no more intervals to refine, quit.
642 INFO = MAX( KL+1-KF, 0 )