Start getting ready for the release
[platform/upstream/lapack.git] / SRC / sgsvj0.f
1       SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
2      +                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
3 *
4 *  -- LAPACK routine (version 3.3.0)                                    --
5 *
6 *  -- Contributed by Zlatko Drmac of the University of Zagreb and     --
7 *  -- Kresimir Veselic of the Fernuniversitaet Hagen                  --
8 *     November 2010
9 *
10 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
11 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
12 *
13 * This routine is also part of SIGMA (version 1.23, October 23. 2008.)
14 * SIGMA is a library of algorithms for highly accurate algorithms for
15 * computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the
16 * eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0.
17 *
18       IMPLICIT           NONE
19 *     ..
20 *     .. Scalar Arguments ..
21       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
22       REAL               EPS, SFMIN, TOL
23       CHARACTER*1        JOBV
24 *     ..
25 *     .. Array Arguments ..
26       REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
27      +                   WORK( LWORK )
28 *     ..
29 *
30 *  Purpose
31 *  =======
32 *
33 *  SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
34 *  purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
35 *  it does not check convergence (stopping criterion). Few tuning
36 *  parameters (marked by [TP]) are available for the implementer.
37 *
38 *  Further Details
39 *  ~~~~~~~~~~~~~~~
40 *  SGSVJ0 is used just to enable SGESVJ to call a simplified version of
41 *  itself to work on a submatrix of the original matrix.
42 *
43 *  Contributors
44 *  ~~~~~~~~~~~~
45 *  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
46 *
47 *  Bugs, Examples and Comments
48 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~
49 *  Please report all bugs and send interesting test examples and comments to
50 *  drmac@math.hr. Thank you.
51 *
52 *  Arguments
53 *  =========
54 *
55 *  JOBV    (input) CHARACTER*1
56 *          Specifies whether the output from this procedure is used
57 *          to compute the matrix V:
58 *          = 'V': the product of the Jacobi rotations is accumulated
59 *                 by postmulyiplying the N-by-N array V.
60 *                (See the description of V.)
61 *          = 'A': the product of the Jacobi rotations is accumulated
62 *                 by postmulyiplying the MV-by-N array V.
63 *                (See the descriptions of MV and V.)
64 *          = 'N': the Jacobi rotations are not accumulated.
65 *
66 *  M       (input) INTEGER
67 *          The number of rows of the input matrix A.  M >= 0.
68 *
69 *  N       (input) INTEGER
70 *          The number of columns of the input matrix A.
71 *          M >= N >= 0.
72 *
73 *  A       (input/output) REAL array, dimension (LDA,N)
74 *          On entry, M-by-N matrix A, such that A*diag(D) represents
75 *          the input matrix.
76 *          On exit,
77 *          A_onexit * D_onexit represents the input matrix A*diag(D)
78 *          post-multiplied by a sequence of Jacobi rotations, where the
79 *          rotation threshold and the total number of sweeps are given in
80 *          TOL and NSWEEP, respectively.
81 *          (See the descriptions of D, TOL and NSWEEP.)
82 *
83 *  LDA     (input) INTEGER
84 *          The leading dimension of the array A.  LDA >= max(1,M).
85 *
86 *  D       (input/workspace/output) REAL array, dimension (N)
87 *          The array D accumulates the scaling factors from the fast scaled
88 *          Jacobi rotations.
89 *          On entry, A*diag(D) represents the input matrix.
90 *          On exit, A_onexit*diag(D_onexit) represents the input matrix
91 *          post-multiplied by a sequence of Jacobi rotations, where the
92 *          rotation threshold and the total number of sweeps are given in
93 *          TOL and NSWEEP, respectively.
94 *          (See the descriptions of A, TOL and NSWEEP.)
95 *
96 *  SVA     (input/workspace/output) REAL array, dimension (N)
97 *          On entry, SVA contains the Euclidean norms of the columns of
98 *          the matrix A*diag(D).
99 *          On exit, SVA contains the Euclidean norms of the columns of
100 *          the matrix onexit*diag(D_onexit).
101 *
102 *  MV      (input) INTEGER
103 *          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
104 *                           sequence of Jacobi rotations.
105 *          If JOBV = 'N',   then MV is not referenced.
106 *
107 *  V       (input/output) REAL array, dimension (LDV,N)
108 *          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
109 *                           sequence of Jacobi rotations.
110 *          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
111 *                           sequence of Jacobi rotations.
112 *          If JOBV = 'N',   then V is not referenced.
113 *
114 *  LDV     (input) INTEGER
115 *          The leading dimension of the array V,  LDV >= 1.
116 *          If JOBV = 'V', LDV .GE. N.
117 *          If JOBV = 'A', LDV .GE. MV.
118 *
119 *  EPS     (input) INTEGER
120 *          EPS = SLAMCH('Epsilon')
121 *
122 *  SFMIN   (input) INTEGER
123 *          SFMIN = SLAMCH('Safe Minimum')
124 *
125 *  TOL     (input) REAL
126 *          TOL is the threshold for Jacobi rotations. For a pair
127 *          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
128 *          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
129 *
130 *  NSWEEP  (input) INTEGER
131 *          NSWEEP is the number of sweeps of Jacobi rotations to be
132 *          performed.
133 *
134 *  WORK    (workspace) REAL array, dimension LWORK.
135 *
136 *  LWORK   (input) INTEGER
137 *          LWORK is the dimension of WORK. LWORK .GE. M.
138 *
139 *  INFO    (output) INTEGER
140 *          = 0 : successful exit.
141 *          < 0 : if INFO = -i, then the i-th argument had an illegal value
142 *
143 *  =====================================================================
144 *
145 *     .. Local Parameters ..
146       REAL               ZERO, HALF, ONE, TWO
147       PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
148      +                   TWO = 2.0E0 )
149 *     ..
150 *     .. Local Scalars ..
151       REAL               AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
152      +                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
153      +                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
154      +                   THSIGN
155       INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
156      +                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
157      +                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
158       LOGICAL            APPLV, ROTOK, RSVEC
159 *     ..
160 *     .. Local Arrays ..
161       REAL               FASTR( 5 )
162 *     ..
163 *     .. Intrinsic Functions ..
164       INTRINSIC          ABS, AMAX1, AMIN1, FLOAT, MIN0, SIGN, SQRT
165 *     ..
166 *     .. External Functions ..
167       REAL               SDOT, SNRM2
168       INTEGER            ISAMAX
169       LOGICAL            LSAME
170       EXTERNAL           ISAMAX, LSAME, SDOT, SNRM2
171 *     ..
172 *     .. External Subroutines ..
173       EXTERNAL           SAXPY, SCOPY, SLASCL, SLASSQ, SROTM, SSWAP
174 *     ..
175 *     .. Executable Statements ..
176 *
177 *     Test the input parameters.
178 *
179       APPLV = LSAME( JOBV, 'A' )
180       RSVEC = LSAME( JOBV, 'V' )
181       IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
182          INFO = -1
183       ELSE IF( M.LT.0 ) THEN
184          INFO = -2
185       ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
186          INFO = -3
187       ELSE IF( LDA.LT.M ) THEN
188          INFO = -5
189       ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
190          INFO = -8
191       ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR. 
192      &         ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
193          INFO = -10
194       ELSE IF( TOL.LE.EPS ) THEN
195          INFO = -13
196       ELSE IF( NSWEEP.LT.0 ) THEN
197          INFO = -14
198       ELSE IF( LWORK.LT.M ) THEN
199          INFO = -16
200       ELSE
201          INFO = 0
202       END IF
203 *
204 *     #:(
205       IF( INFO.NE.0 ) THEN
206          CALL XERBLA( 'SGSVJ0', -INFO )
207          RETURN
208       END IF
209 *
210       IF( RSVEC ) THEN
211          MVL = N
212       ELSE IF( APPLV ) THEN
213          MVL = MV
214       END IF
215       RSVEC = RSVEC .OR. APPLV
216
217       ROOTEPS = SQRT( EPS )
218       ROOTSFMIN = SQRT( SFMIN )
219       SMALL = SFMIN / EPS
220       BIG = ONE / SFMIN
221       ROOTBIG = ONE / ROOTSFMIN
222       BIGTHETA = ONE / ROOTEPS
223       ROOTTOL = SQRT( TOL )
224 *
225 *
226 *     .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
227 *
228       EMPTSW = ( N*( N-1 ) ) / 2
229       NOTROT = 0
230       FASTR( 1 ) = ZERO
231 *
232 *     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
233 *
234
235       SWBAND = 0
236 *[TP] SWBAND is a tuning parameter. It is meaningful and effective
237 *     if SGESVJ is used as a computational routine in the preconditioned
238 *     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure
239 *     ......
240
241       KBL = MIN0( 8, N )
242 *[TP] KBL is a tuning parameter that defines the tile size in the
243 *     tiling of the p-q loops of pivot pairs. In general, an optimal
244 *     value of KBL depends on the matrix dimensions and on the
245 *     parameters of the computer's memory.
246 *
247       NBL = N / KBL
248       IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
249
250       BLSKIP = ( KBL**2 ) + 1
251 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
252
253       ROWSKIP = MIN0( 5, KBL )
254 *[TP] ROWSKIP is a tuning parameter.
255
256       LKAHEAD = 1
257 *[TP] LKAHEAD is a tuning parameter.
258       SWBAND = 0
259       PSKIPPED = 0
260 *
261       DO 1993 i = 1, NSWEEP
262 *     .. go go go ...
263 *
264          MXAAPQ = ZERO
265          MXSINJ = ZERO
266          ISWROT = 0
267 *
268          NOTROT = 0
269          PSKIPPED = 0
270 *
271          DO 2000 ibr = 1, NBL
272
273             igl = ( ibr-1 )*KBL + 1
274 *
275             DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
276 *
277                igl = igl + ir1*KBL
278 *
279                DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
280
281 *     .. de Rijk's pivoting
282                   q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
283                   IF( p.NE.q ) THEN
284                      CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
285                      IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1,
286      +                                      V( 1, q ), 1 )
287                      TEMP1 = SVA( p )
288                      SVA( p ) = SVA( q )
289                      SVA( q ) = TEMP1
290                      TEMP1 = D( p )
291                      D( p ) = D( q )
292                      D( q ) = TEMP1
293                   END IF
294 *
295                   IF( ir1.EQ.0 ) THEN
296 *
297 *        Column norms are periodically updated by explicit
298 *        norm computation.
299 *        Caveat:
300 *        Some BLAS implementations compute SNRM2(M,A(1,p),1)
301 *        as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may result in
302 *        overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and
303 *        undeflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
304 *        Hence, SNRM2 cannot be trusted, not even in the case when
305 *        the true norm is far from the under(over)flow boundaries.
306 *        If properly implemented SNRM2 is available, the IF-THEN-ELSE
307 *        below should read "AAPP = SNRM2( M, A(1,p), 1 ) * D(p)".
308 *
309                      IF( ( SVA( p ).LT.ROOTBIG ) .AND.
310      +                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
311                         SVA( p ) = SNRM2( M, A( 1, p ), 1 )*D( p )
312                      ELSE
313                         TEMP1 = ZERO
314                         AAPP = ONE
315                         CALL SLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
316                         SVA( p ) = TEMP1*SQRT( AAPP )*D( p )
317                      END IF
318                      AAPP = SVA( p )
319                   ELSE
320                      AAPP = SVA( p )
321                   END IF
322
323 *
324                   IF( AAPP.GT.ZERO ) THEN
325 *
326                      PSKIPPED = 0
327 *
328                      DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
329 *
330                         AAQQ = SVA( q )
331
332                         IF( AAQQ.GT.ZERO ) THEN
333 *
334                            AAPP0 = AAPP
335                            IF( AAQQ.GE.ONE ) THEN
336                               ROTOK = ( SMALL*AAPP ).LE.AAQQ
337                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
338                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
339      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
340      +                                  / AAPP
341                               ELSE
342                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
343                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
344      +                                        M, 1, WORK, LDA, IERR )
345                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
346      +                                  1 )*D( q ) / AAQQ
347                               END IF
348                            ELSE
349                               ROTOK = AAPP.LE.( AAQQ / SMALL )
350                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
351                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
352      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
353      +                                  / AAPP
354                               ELSE
355                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
356                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
357      +                                        M, 1, WORK, LDA, IERR )
358                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
359      +                                  1 )*D( p ) / AAPP
360                               END IF
361                            END IF
362 *
363                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
364 *
365 *        TO rotate or NOT to rotate, THAT is the question ...
366 *
367                            IF( ABS( AAPQ ).GT.TOL ) THEN
368 *
369 *           .. rotate
370 *           ROTATED = ROTATED + ONE
371 *
372                               IF( ir1.EQ.0 ) THEN
373                                  NOTROT = 0
374                                  PSKIPPED = 0
375                                  ISWROT = ISWROT + 1
376                               END IF
377 *
378                               IF( ROTOK ) THEN
379 *
380                                  AQOAP = AAQQ / AAPP
381                                  APOAQ = AAPP / AAQQ
382                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
383 *
384                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
385 *
386                                     T = HALF / THETA
387                                     FASTR( 3 ) = T*D( p ) / D( q )
388                                     FASTR( 4 ) = -T*D( q ) / D( p )
389                                     CALL SROTM( M, A( 1, p ), 1,
390      +                                          A( 1, q ), 1, FASTR )
391                                     IF( RSVEC )CALL SROTM( MVL,
392      +                                              V( 1, p ), 1,
393      +                                              V( 1, q ), 1,
394      +                                              FASTR )
395                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
396      +                                         ONE+T*APOAQ*AAPQ ) )
397                                     AAPP = AAPP*SQRT( AMAX1( ZERO, 
398      +                                         ONE-T*AQOAP*AAPQ ) )
399                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
400 *
401                                  ELSE
402 *
403 *                 .. choose correct signum for THETA and rotate
404 *
405                                     THSIGN = -SIGN( ONE, AAPQ )
406                                     T = ONE / ( THETA+THSIGN*
407      +                                  SQRT( ONE+THETA*THETA ) )
408                                     CS = SQRT( ONE / ( ONE+T*T ) )
409                                     SN = T*CS
410 *
411                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
412                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
413      +                                         ONE+T*APOAQ*AAPQ ) )
414                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
415      +                                     ONE-T*AQOAP*AAPQ ) )
416 *
417                                     APOAQ = D( p ) / D( q )
418                                     AQOAP = D( q ) / D( p )
419                                     IF( D( p ).GE.ONE ) THEN
420                                        IF( D( q ).GE.ONE ) THEN
421                                           FASTR( 3 ) = T*APOAQ
422                                           FASTR( 4 ) = -T*AQOAP
423                                           D( p ) = D( p )*CS
424                                           D( q ) = D( q )*CS
425                                           CALL SROTM( M, A( 1, p ), 1,
426      +                                                A( 1, q ), 1,
427      +                                                FASTR )
428                                           IF( RSVEC )CALL SROTM( MVL,
429      +                                        V( 1, p ), 1, V( 1, q ),
430      +                                        1, FASTR )
431                                        ELSE
432                                           CALL SAXPY( M, -T*AQOAP,
433      +                                                A( 1, q ), 1,
434      +                                                A( 1, p ), 1 )
435                                           CALL SAXPY( M, CS*SN*APOAQ,
436      +                                                A( 1, p ), 1,
437      +                                                A( 1, q ), 1 )
438                                           D( p ) = D( p )*CS
439                                           D( q ) = D( q ) / CS
440                                           IF( RSVEC ) THEN
441                                              CALL SAXPY( MVL, -T*AQOAP,
442      +                                                   V( 1, q ), 1,
443      +                                                   V( 1, p ), 1 )
444                                              CALL SAXPY( MVL,
445      +                                                   CS*SN*APOAQ,
446      +                                                   V( 1, p ), 1,
447      +                                                   V( 1, q ), 1 )
448                                           END IF
449                                        END IF
450                                     ELSE
451                                        IF( D( q ).GE.ONE ) THEN
452                                           CALL SAXPY( M, T*APOAQ,
453      +                                                A( 1, p ), 1,
454      +                                                A( 1, q ), 1 )
455                                           CALL SAXPY( M, -CS*SN*AQOAP,
456      +                                                A( 1, q ), 1,
457      +                                                A( 1, p ), 1 )
458                                           D( p ) = D( p ) / CS
459                                           D( q ) = D( q )*CS
460                                           IF( RSVEC ) THEN
461                                              CALL SAXPY( MVL, T*APOAQ,
462      +                                                   V( 1, p ), 1,
463      +                                                   V( 1, q ), 1 )
464                                              CALL SAXPY( MVL,
465      +                                                   -CS*SN*AQOAP,
466      +                                                   V( 1, q ), 1,
467      +                                                   V( 1, p ), 1 )
468                                           END IF
469                                        ELSE
470                                           IF( D( p ).GE.D( q ) ) THEN
471                                              CALL SAXPY( M, -T*AQOAP,
472      +                                                   A( 1, q ), 1,
473      +                                                   A( 1, p ), 1 )
474                                              CALL SAXPY( M, CS*SN*APOAQ,
475      +                                                   A( 1, p ), 1,
476      +                                                   A( 1, q ), 1 )
477                                              D( p ) = D( p )*CS
478                                              D( q ) = D( q ) / CS
479                                              IF( RSVEC ) THEN
480                                                 CALL SAXPY( MVL,
481      +                                               -T*AQOAP,
482      +                                               V( 1, q ), 1,
483      +                                               V( 1, p ), 1 )
484                                                 CALL SAXPY( MVL,
485      +                                               CS*SN*APOAQ,
486      +                                               V( 1, p ), 1,
487      +                                               V( 1, q ), 1 )
488                                              END IF
489                                           ELSE
490                                              CALL SAXPY( M, T*APOAQ,
491      +                                                   A( 1, p ), 1,
492      +                                                   A( 1, q ), 1 )
493                                              CALL SAXPY( M,
494      +                                                   -CS*SN*AQOAP,
495      +                                                   A( 1, q ), 1,
496      +                                                   A( 1, p ), 1 )
497                                              D( p ) = D( p ) / CS
498                                              D( q ) = D( q )*CS
499                                              IF( RSVEC ) THEN
500                                                 CALL SAXPY( MVL,
501      +                                               T*APOAQ, V( 1, p ),
502      +                                               1, V( 1, q ), 1 )
503                                                 CALL SAXPY( MVL,
504      +                                               -CS*SN*AQOAP,
505      +                                               V( 1, q ), 1,
506      +                                               V( 1, p ), 1 )
507                                              END IF
508                                           END IF
509                                        END IF
510                                     END IF
511                                  END IF
512 *
513                               ELSE
514 *              .. have to use modified Gram-Schmidt like transformation
515                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
516                                  CALL SLASCL( 'G', 0, 0, AAPP, ONE, M,
517      +                                        1, WORK, LDA, IERR )
518                                  CALL SLASCL( 'G', 0, 0, AAQQ, ONE, M,
519      +                                        1, A( 1, q ), LDA, IERR )
520                                  TEMP1 = -AAPQ*D( p ) / D( q )
521                                  CALL SAXPY( M, TEMP1, WORK, 1,
522      +                                       A( 1, q ), 1 )
523                                  CALL SLASCL( 'G', 0, 0, ONE, AAQQ, M,
524      +                                        1, A( 1, q ), LDA, IERR )
525                                  SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
526      +                                      ONE-AAPQ*AAPQ ) )
527                                  MXSINJ = AMAX1( MXSINJ, SFMIN )
528                               END IF
529 *           END IF ROTOK THEN ... ELSE
530 *
531 *           In the case of cancellation in updating SVA(q), SVA(p)
532 *           recompute SVA(q), SVA(p).
533                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
534      +                            THEN
535                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
536      +                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
537                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
538      +                                         D( q )
539                                  ELSE
540                                     T = ZERO
541                                     AAQQ = ONE
542                                     CALL SLASSQ( M, A( 1, q ), 1, T,
543      +                                           AAQQ )
544                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
545                                  END IF
546                               END IF
547                               IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
548                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
549      +                               ( AAPP.GT.ROOTSFMIN ) ) THEN
550                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
551      +                                     D( p )
552                                  ELSE
553                                     T = ZERO
554                                     AAPP = ONE
555                                     CALL SLASSQ( M, A( 1, p ), 1, T,
556      +                                           AAPP )
557                                     AAPP = T*SQRT( AAPP )*D( p )
558                                  END IF
559                                  SVA( p ) = AAPP
560                               END IF
561 *
562                            ELSE
563 *        A(:,p) and A(:,q) already numerically orthogonal
564                               IF( ir1.EQ.0 )NOTROT = NOTROT + 1
565                               PSKIPPED = PSKIPPED + 1
566                            END IF
567                         ELSE
568 *        A(:,q) is zero column
569                            IF( ir1.EQ.0 )NOTROT = NOTROT + 1
570                            PSKIPPED = PSKIPPED + 1
571                         END IF
572 *
573                         IF( ( i.LE.SWBAND ) .AND.
574      +                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
575                            IF( ir1.EQ.0 )AAPP = -AAPP
576                            NOTROT = 0
577                            GO TO 2103
578                         END IF
579 *
580  2002                CONTINUE
581 *     END q-LOOP
582 *
583  2103                CONTINUE
584 *     bailed out of q-loop
585
586                      SVA( p ) = AAPP
587
588                   ELSE
589                      SVA( p ) = AAPP
590                      IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
591      +                   NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
592                   END IF
593 *
594  2001          CONTINUE
595 *     end of the p-loop
596 *     end of doing the block ( ibr, ibr )
597  1002       CONTINUE
598 *     end of ir1-loop
599 *
600 *........................................................
601 * ... go to the off diagonal blocks
602 *
603             igl = ( ibr-1 )*KBL + 1
604 *
605             DO 2010 jbc = ibr + 1, NBL
606 *
607                jgl = ( jbc-1 )*KBL + 1
608 *
609 *        doing the block at ( ibr, jbc )
610 *
611                IJBLSK = 0
612                DO 2100 p = igl, MIN0( igl+KBL-1, N )
613 *
614                   AAPP = SVA( p )
615 *
616                   IF( AAPP.GT.ZERO ) THEN
617 *
618                      PSKIPPED = 0
619 *
620                      DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
621 *
622                         AAQQ = SVA( q )
623 *
624                         IF( AAQQ.GT.ZERO ) THEN
625                            AAPP0 = AAPP
626 *
627 *     .. M x 2 Jacobi SVD ..
628 *
629 *        .. Safe Gram matrix computation ..
630 *
631                            IF( AAQQ.GE.ONE ) THEN
632                               IF( AAPP.GE.AAQQ ) THEN
633                                  ROTOK = ( SMALL*AAPP ).LE.AAQQ
634                               ELSE
635                                  ROTOK = ( SMALL*AAQQ ).LE.AAPP
636                               END IF
637                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
638                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
639      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
640      +                                  / AAPP
641                               ELSE
642                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
643                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
644      +                                        M, 1, WORK, LDA, IERR )
645                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
646      +                                  1 )*D( q ) / AAQQ
647                               END IF
648                            ELSE
649                               IF( AAPP.GE.AAQQ ) THEN
650                                  ROTOK = AAPP.LE.( AAQQ / SMALL )
651                               ELSE
652                                  ROTOK = AAQQ.LE.( AAPP / SMALL )
653                               END IF
654                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
655                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
656      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
657      +                                  / AAPP
658                               ELSE
659                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
660                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
661      +                                        M, 1, WORK, LDA, IERR )
662                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
663      +                                  1 )*D( p ) / AAPP
664                               END IF
665                            END IF
666 *
667                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
668 *
669 *        TO rotate or NOT to rotate, THAT is the question ...
670 *
671                            IF( ABS( AAPQ ).GT.TOL ) THEN
672                               NOTROT = 0
673 *           ROTATED  = ROTATED + 1
674                               PSKIPPED = 0
675                               ISWROT = ISWROT + 1
676 *
677                               IF( ROTOK ) THEN
678 *
679                                  AQOAP = AAQQ / AAPP
680                                  APOAQ = AAPP / AAQQ
681                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
682                                  IF( AAQQ.GT.AAPP0 )THETA = -THETA
683 *
684                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
685                                     T = HALF / THETA
686                                     FASTR( 3 ) = T*D( p ) / D( q )
687                                     FASTR( 4 ) = -T*D( q ) / D( p )
688                                     CALL SROTM( M, A( 1, p ), 1,
689      +                                          A( 1, q ), 1, FASTR )
690                                     IF( RSVEC )CALL SROTM( MVL,
691      +                                              V( 1, p ), 1,
692      +                                              V( 1, q ), 1,
693      +                                              FASTR )
694                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
695      +                                         ONE+T*APOAQ*AAPQ ) )
696                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
697      +                                     ONE-T*AQOAP*AAPQ ) )
698                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
699                                  ELSE
700 *
701 *                 .. choose correct signum for THETA and rotate
702 *
703                                     THSIGN = -SIGN( ONE, AAPQ )
704                                     IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
705                                     T = ONE / ( THETA+THSIGN*
706      +                                  SQRT( ONE+THETA*THETA ) )
707                                     CS = SQRT( ONE / ( ONE+T*T ) )
708                                     SN = T*CS
709                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
710                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
711      +                                         ONE+T*APOAQ*AAPQ ) )
712                                     AAPP = AAPP*SQRT( AMAX1( ZERO, 
713      +                                         ONE-T*AQOAP*AAPQ ) )
714 *
715                                     APOAQ = D( p ) / D( q )
716                                     AQOAP = D( q ) / D( p )
717                                     IF( D( p ).GE.ONE ) THEN
718 *
719                                        IF( D( q ).GE.ONE ) THEN
720                                           FASTR( 3 ) = T*APOAQ
721                                           FASTR( 4 ) = -T*AQOAP
722                                           D( p ) = D( p )*CS
723                                           D( q ) = D( q )*CS
724                                           CALL SROTM( M, A( 1, p ), 1,
725      +                                                A( 1, q ), 1,
726      +                                                FASTR )
727                                           IF( RSVEC )CALL SROTM( MVL,
728      +                                        V( 1, p ), 1, V( 1, q ),
729      +                                        1, FASTR )
730                                        ELSE
731                                           CALL SAXPY( M, -T*AQOAP,
732      +                                                A( 1, q ), 1,
733      +                                                A( 1, p ), 1 )
734                                           CALL SAXPY( M, CS*SN*APOAQ,
735      +                                                A( 1, p ), 1,
736      +                                                A( 1, q ), 1 )
737                                           IF( RSVEC ) THEN
738                                              CALL SAXPY( MVL, -T*AQOAP,
739      +                                                   V( 1, q ), 1,
740      +                                                   V( 1, p ), 1 )
741                                              CALL SAXPY( MVL,
742      +                                                   CS*SN*APOAQ,
743      +                                                   V( 1, p ), 1,
744      +                                                   V( 1, q ), 1 )
745                                           END IF
746                                           D( p ) = D( p )*CS
747                                           D( q ) = D( q ) / CS
748                                        END IF
749                                     ELSE
750                                        IF( D( q ).GE.ONE ) THEN
751                                           CALL SAXPY( M, T*APOAQ,
752      +                                                A( 1, p ), 1,
753      +                                                A( 1, q ), 1 )
754                                           CALL SAXPY( M, -CS*SN*AQOAP,
755      +                                                A( 1, q ), 1,
756      +                                                A( 1, p ), 1 )
757                                           IF( RSVEC ) THEN
758                                              CALL SAXPY( MVL, T*APOAQ,
759      +                                                   V( 1, p ), 1,
760      +                                                   V( 1, q ), 1 )
761                                              CALL SAXPY( MVL,
762      +                                                   -CS*SN*AQOAP,
763      +                                                   V( 1, q ), 1,
764      +                                                   V( 1, p ), 1 )
765                                           END IF
766                                           D( p ) = D( p ) / CS
767                                           D( q ) = D( q )*CS
768                                        ELSE
769                                           IF( D( p ).GE.D( q ) ) THEN
770                                              CALL SAXPY( M, -T*AQOAP,
771      +                                                   A( 1, q ), 1,
772      +                                                   A( 1, p ), 1 )
773                                              CALL SAXPY( M, CS*SN*APOAQ,
774      +                                                   A( 1, p ), 1,
775      +                                                   A( 1, q ), 1 )
776                                              D( p ) = D( p )*CS
777                                              D( q ) = D( q ) / CS
778                                              IF( RSVEC ) THEN
779                                                 CALL SAXPY( MVL,
780      +                                               -T*AQOAP,
781      +                                               V( 1, q ), 1,
782      +                                               V( 1, p ), 1 )
783                                                 CALL SAXPY( MVL,
784      +                                               CS*SN*APOAQ,
785      +                                               V( 1, p ), 1,
786      +                                               V( 1, q ), 1 )
787                                              END IF
788                                           ELSE
789                                              CALL SAXPY( M, T*APOAQ,
790      +                                                   A( 1, p ), 1,
791      +                                                   A( 1, q ), 1 )
792                                              CALL SAXPY( M,
793      +                                                   -CS*SN*AQOAP,
794      +                                                   A( 1, q ), 1,
795      +                                                   A( 1, p ), 1 )
796                                              D( p ) = D( p ) / CS
797                                              D( q ) = D( q )*CS
798                                              IF( RSVEC ) THEN
799                                                 CALL SAXPY( MVL,
800      +                                               T*APOAQ, V( 1, p ),
801      +                                               1, V( 1, q ), 1 )
802                                                 CALL SAXPY( MVL,
803      +                                               -CS*SN*AQOAP,
804      +                                               V( 1, q ), 1,
805      +                                               V( 1, p ), 1 )
806                                              END IF
807                                           END IF
808                                        END IF
809                                     END IF
810                                  END IF
811 *
812                               ELSE
813                                  IF( AAPP.GT.AAQQ ) THEN
814                                     CALL SCOPY( M, A( 1, p ), 1, WORK,
815      +                                          1 )
816                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
817      +                                           M, 1, WORK, LDA, IERR )
818                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
819      +                                           M, 1, A( 1, q ), LDA,
820      +                                           IERR )
821                                     TEMP1 = -AAPQ*D( p ) / D( q )
822                                     CALL SAXPY( M, TEMP1, WORK, 1,
823      +                                          A( 1, q ), 1 )
824                                     CALL SLASCL( 'G', 0, 0, ONE, AAQQ,
825      +                                           M, 1, A( 1, q ), LDA,
826      +                                           IERR )
827                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
828      +                                         ONE-AAPQ*AAPQ ) )
829                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
830                                  ELSE
831                                     CALL SCOPY( M, A( 1, q ), 1, WORK,
832      +                                          1 )
833                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
834      +                                           M, 1, WORK, LDA, IERR )
835                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
836      +                                           M, 1, A( 1, p ), LDA,
837      +                                           IERR )
838                                     TEMP1 = -AAPQ*D( q ) / D( p )
839                                     CALL SAXPY( M, TEMP1, WORK, 1,
840      +                                          A( 1, p ), 1 )
841                                     CALL SLASCL( 'G', 0, 0, ONE, AAPP,
842      +                                           M, 1, A( 1, p ), LDA,
843      +                                           IERR )
844                                     SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
845      +                                         ONE-AAPQ*AAPQ ) )
846                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
847                                  END IF
848                               END IF
849 *           END IF ROTOK THEN ... ELSE
850 *
851 *           In the case of cancellation in updating SVA(q)
852 *           .. recompute SVA(q)
853                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
854      +                            THEN
855                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
856      +                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
857                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
858      +                                         D( q )
859                                  ELSE
860                                     T = ZERO
861                                     AAQQ = ONE
862                                     CALL SLASSQ( M, A( 1, q ), 1, T,
863      +                                           AAQQ )
864                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
865                                  END IF
866                               END IF
867                               IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
868                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
869      +                               ( AAPP.GT.ROOTSFMIN ) ) THEN
870                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
871      +                                     D( p )
872                                  ELSE
873                                     T = ZERO
874                                     AAPP = ONE
875                                     CALL SLASSQ( M, A( 1, p ), 1, T,
876      +                                           AAPP )
877                                     AAPP = T*SQRT( AAPP )*D( p )
878                                  END IF
879                                  SVA( p ) = AAPP
880                               END IF
881 *              end of OK rotation
882                            ELSE
883                               NOTROT = NOTROT + 1
884                               PSKIPPED = PSKIPPED + 1
885                               IJBLSK = IJBLSK + 1
886                            END IF
887                         ELSE
888                            NOTROT = NOTROT + 1
889                            PSKIPPED = PSKIPPED + 1
890                            IJBLSK = IJBLSK + 1
891                         END IF
892 *
893                         IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
894      +                      THEN
895                            SVA( p ) = AAPP
896                            NOTROT = 0
897                            GO TO 2011
898                         END IF
899                         IF( ( i.LE.SWBAND ) .AND.
900      +                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
901                            AAPP = -AAPP
902                            NOTROT = 0
903                            GO TO 2203
904                         END IF
905 *
906  2200                CONTINUE
907 *        end of the q-loop
908  2203                CONTINUE
909 *
910                      SVA( p ) = AAPP
911 *
912                   ELSE
913                      IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
914      +                   MIN0( jgl+KBL-1, N ) - jgl + 1
915                      IF( AAPP.LT.ZERO )NOTROT = 0
916                   END IF
917
918  2100          CONTINUE
919 *     end of the p-loop
920  2010       CONTINUE
921 *     end of the jbc-loop
922  2011       CONTINUE
923 *2011 bailed out of the jbc-loop
924             DO 2012 p = igl, MIN0( igl+KBL-1, N )
925                SVA( p ) = ABS( SVA( p ) )
926  2012       CONTINUE
927 *
928  2000    CONTINUE
929 *2000 :: end of the ibr-loop
930 *
931 *     .. update SVA(N)
932          IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
933      +       THEN
934             SVA( N ) = SNRM2( M, A( 1, N ), 1 )*D( N )
935          ELSE
936             T = ZERO
937             AAPP = ONE
938             CALL SLASSQ( M, A( 1, N ), 1, T, AAPP )
939             SVA( N ) = T*SQRT( AAPP )*D( N )
940          END IF
941 *
942 *     Additional steering devices
943 *
944          IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
945      +       ( ISWROT.LE.N ) ) )SWBAND = i
946 *
947          IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.FLOAT( N )*TOL ) .AND.
948      +       ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
949             GO TO 1994
950          END IF
951 *
952          IF( NOTROT.GE.EMPTSW )GO TO 1994
953
954  1993 CONTINUE
955 *     end i=1:NSWEEP loop
956 * #:) Reaching this point means that the procedure has comleted the given
957 *     number of iterations.
958       INFO = NSWEEP - 1
959       GO TO 1995
960  1994 CONTINUE
961 * #:) Reaching this point means that during the i-th sweep all pivots were
962 *     below the given tolerance, causing early exit.
963 *
964       INFO = 0
965 * #:) INFO = 0 confirms successful iterations.
966  1995 CONTINUE
967 *
968 *     Sort the vector D.
969       DO 5991 p = 1, N - 1
970          q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
971          IF( p.NE.q ) THEN
972             TEMP1 = SVA( p )
973             SVA( p ) = SVA( q )
974             SVA( q ) = TEMP1
975             TEMP1 = D( p )
976             D( p ) = D( q )
977             D( q ) = TEMP1
978             CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
979             IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
980          END IF
981  5991 CONTINUE
982 *
983       RETURN
984 *     ..
985 *     .. END OF SGSVJ0
986 *     ..
987       END