Integrating Doxygen in comments
[platform/upstream/lapack.git] / SRC / sgsvj0.f
1 *> \brief \b SGSVJ0
2 *
3 *  =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at 
6 *            http://www.netlib.org/lapack/explore-html/ 
7 *
8 *  Definition
9 *  ==========
10 *
11 *       SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
12 *                          SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
13
14 *       .. Scalar Arguments ..
15 *       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
16 *       REAL               EPS, SFMIN, TOL
17 *       CHARACTER*1        JOBV
18 *       ..
19 *       .. Array Arguments ..
20 *       REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
21 *      $                   WORK( LWORK )
22 *       ..
23 *  
24 *  Purpose
25 *  =======
26 *
27 *>\details \b Purpose:
28 *>\verbatim
29 *>
30 *> SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
31 *> purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
32 *> it does not check convergence (stopping criterion). Few tuning
33 *> parameters (marked by [TP]) are available for the implementer.
34 *>
35 *> Further Details
36 *> ~~~~~~~~~~~~~~~
37 *> SGSVJ0 is used just to enable SGESVJ to call a simplified version of
38 *> itself to work on a submatrix of the original matrix.
39 *>
40 *> Contributors
41 *> ~~~~~~~~~~~~
42 *> Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
43 *>
44 *> Bugs, Examples and Comments
45 *> ~~~~~~~~~~~~~~~~~~~~~~~~~~~
46 *> Please report all bugs and send interesting test examples and comments to
47 *> drmac@math.hr. Thank you.
48 *>
49 *>\endverbatim
50 *
51 *  Arguments
52 *  =========
53 *
54 *> \param[in] JOBV
55 *> \verbatim
56 *>          JOBV is CHARACTER*1
57 *>          Specifies whether the output from this procedure is used
58 *>          to compute the matrix V:
59 *>          = 'V': the product of the Jacobi rotations is accumulated
60 *>                 by postmulyiplying the N-by-N array V.
61 *>                (See the description of V.)
62 *>          = 'A': the product of the Jacobi rotations is accumulated
63 *>                 by postmulyiplying the MV-by-N array V.
64 *>                (See the descriptions of MV and V.)
65 *>          = 'N': the Jacobi rotations are not accumulated.
66 *> \endverbatim
67 *>
68 *> \param[in] M
69 *> \verbatim
70 *>          M is INTEGER
71 *>          The number of rows of the input matrix A.  M >= 0.
72 *> \endverbatim
73 *>
74 *> \param[in] N
75 *> \verbatim
76 *>          N is INTEGER
77 *>          The number of columns of the input matrix A.
78 *>          M >= N >= 0.
79 *> \endverbatim
80 *>
81 *> \param[in,out] A
82 *> \verbatim
83 *>          A is REAL array, dimension (LDA,N)
84 *>          On entry, M-by-N matrix A, such that A*diag(D) represents
85 *>          the input matrix.
86 *>          On exit,
87 *>          A_onexit * D_onexit represents the input matrix A*diag(D)
88 *>          post-multiplied by a sequence of Jacobi rotations, where the
89 *>          rotation threshold and the total number of sweeps are given in
90 *>          TOL and NSWEEP, respectively.
91 *>          (See the descriptions of D, TOL and NSWEEP.)
92 *> \endverbatim
93 *>
94 *> \param[in] LDA
95 *> \verbatim
96 *>          LDA is INTEGER
97 *>          The leading dimension of the array A.  LDA >= max(1,M).
98 *> \endverbatim
99 *>
100 *> \param[in,out] D
101 *> \verbatim
102 *>          D is REAL array, dimension (N)
103 *>          The array D accumulates the scaling factors from the fast scaled
104 *>          Jacobi rotations.
105 *>          On entry, A*diag(D) represents the input matrix.
106 *>          On exit, A_onexit*diag(D_onexit) represents the input matrix
107 *>          post-multiplied by a sequence of Jacobi rotations, where the
108 *>          rotation threshold and the total number of sweeps are given in
109 *>          TOL and NSWEEP, respectively.
110 *>          (See the descriptions of A, TOL and NSWEEP.)
111 *> \endverbatim
112 *>
113 *> \param[in,out] SVA
114 *> \verbatim
115 *>          SVA is REAL array, dimension (N)
116 *>          On entry, SVA contains the Euclidean norms of the columns of
117 *>          the matrix A*diag(D).
118 *>          On exit, SVA contains the Euclidean norms of the columns of
119 *>          the matrix onexit*diag(D_onexit).
120 *> \endverbatim
121 *>
122 *> \param[in] MV
123 *> \verbatim
124 *>          MV is INTEGER
125 *>          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
126 *>                           sequence of Jacobi rotations.
127 *>          If JOBV = 'N',   then MV is not referenced.
128 *> \endverbatim
129 *>
130 *> \param[in,out] V
131 *> \verbatim
132 *>          V is REAL array, dimension (LDV,N)
133 *>          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
134 *>                           sequence of Jacobi rotations.
135 *>          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
136 *>                           sequence of Jacobi rotations.
137 *>          If JOBV = 'N',   then V is not referenced.
138 *> \endverbatim
139 *>
140 *> \param[in] LDV
141 *> \verbatim
142 *>          LDV is INTEGER
143 *>          The leading dimension of the array V,  LDV >= 1.
144 *>          If JOBV = 'V', LDV .GE. N.
145 *>          If JOBV = 'A', LDV .GE. MV.
146 *> \endverbatim
147 *>
148 *> \param[in] EPS
149 *> \verbatim
150 *>          EPS is INTEGER
151 *>          EPS = SLAMCH('Epsilon')
152 *> \endverbatim
153 *>
154 *> \param[in] SFMIN
155 *> \verbatim
156 *>          SFMIN is INTEGER
157 *>          SFMIN = SLAMCH('Safe Minimum')
158 *> \endverbatim
159 *>
160 *> \param[in] TOL
161 *> \verbatim
162 *>          TOL is REAL
163 *>          TOL is the threshold for Jacobi rotations. For a pair
164 *>          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
165 *>          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
166 *> \endverbatim
167 *>
168 *> \param[in] NSWEEP
169 *> \verbatim
170 *>          NSWEEP is INTEGER
171 *>          NSWEEP is the number of sweeps of Jacobi rotations to be
172 *>          performed.
173 *> \endverbatim
174 *>
175 *> \param[out] WORK
176 *> \verbatim
177 *>          WORK is REAL array, dimension LWORK.
178 *> \endverbatim
179 *>
180 *> \param[in] LWORK
181 *> \verbatim
182 *>          LWORK is INTEGER
183 *>          LWORK is the dimension of WORK. LWORK .GE. M.
184 *> \endverbatim
185 *>
186 *> \param[out] INFO
187 *> \verbatim
188 *>          INFO is INTEGER
189 *>          = 0 : successful exit.
190 *>          < 0 : if INFO = -i, then the i-th argument had an illegal value
191 *> \endverbatim
192 *>
193 *
194 *  Authors
195 *  =======
196 *
197 *> \author Univ. of Tennessee 
198 *> \author Univ. of California Berkeley 
199 *> \author Univ. of Colorado Denver 
200 *> \author NAG Ltd. 
201 *
202 *> \date November 2011
203 *
204 *> \ingroup realOTHERcomputational
205 *
206 *  =====================================================================
207       SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
208      $                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
209 *
210 *  -- LAPACK computational routine (version 1.23, October 23. 2008.) --
211 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
212 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
213 *     November 2011
214 *
215 *     .. Scalar Arguments ..
216       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
217       REAL               EPS, SFMIN, TOL
218       CHARACTER*1        JOBV
219 *     ..
220 *     .. Array Arguments ..
221       REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
222      $                   WORK( LWORK )
223 *     ..
224 *
225 *  =====================================================================
226 *
227 *     .. Local Parameters ..
228       REAL               ZERO, HALF, ONE, TWO
229       PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
230      $                   TWO = 2.0E0 )
231 *     ..
232 *     .. Local Scalars ..
233       REAL               AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
234      $                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
235      $                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
236      $                   THSIGN
237       INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
238      $                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
239      $                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
240       LOGICAL            APPLV, ROTOK, RSVEC
241 *     ..
242 *     .. Local Arrays ..
243       REAL               FASTR( 5 )
244 *     ..
245 *     .. Intrinsic Functions ..
246       INTRINSIC          ABS, AMAX1, FLOAT, MIN0, SIGN, SQRT
247 *     ..
248 *     .. External Functions ..
249       REAL               SDOT, SNRM2
250       INTEGER            ISAMAX
251       LOGICAL            LSAME
252       EXTERNAL           ISAMAX, LSAME, SDOT, SNRM2
253 *     ..
254 *     .. External Subroutines ..
255       EXTERNAL           SAXPY, SCOPY, SLASCL, SLASSQ, SROTM, SSWAP
256 *     ..
257 *     .. Executable Statements ..
258 *
259 *     Test the input parameters.
260 *
261       APPLV = LSAME( JOBV, 'A' )
262       RSVEC = LSAME( JOBV, 'V' )
263       IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
264          INFO = -1
265       ELSE IF( M.LT.0 ) THEN
266          INFO = -2
267       ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
268          INFO = -3
269       ELSE IF( LDA.LT.M ) THEN
270          INFO = -5
271       ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
272          INFO = -8
273       ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR. 
274      $         ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
275          INFO = -10
276       ELSE IF( TOL.LE.EPS ) THEN
277          INFO = -13
278       ELSE IF( NSWEEP.LT.0 ) THEN
279          INFO = -14
280       ELSE IF( LWORK.LT.M ) THEN
281          INFO = -16
282       ELSE
283          INFO = 0
284       END IF
285 *
286 *     #:(
287       IF( INFO.NE.0 ) THEN
288          CALL XERBLA( 'SGSVJ0', -INFO )
289          RETURN
290       END IF
291 *
292       IF( RSVEC ) THEN
293          MVL = N
294       ELSE IF( APPLV ) THEN
295          MVL = MV
296       END IF
297       RSVEC = RSVEC .OR. APPLV
298
299       ROOTEPS = SQRT( EPS )
300       ROOTSFMIN = SQRT( SFMIN )
301       SMALL = SFMIN / EPS
302       BIG = ONE / SFMIN
303       ROOTBIG = ONE / ROOTSFMIN
304       BIGTHETA = ONE / ROOTEPS
305       ROOTTOL = SQRT( TOL )
306 *
307 *     .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
308 *
309       EMPTSW = ( N*( N-1 ) ) / 2
310       NOTROT = 0
311       FASTR( 1 ) = ZERO
312 *
313 *     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
314 *
315
316       SWBAND = 0
317 *[TP] SWBAND is a tuning parameter. It is meaningful and effective
318 *     if SGESVJ is used as a computational routine in the preconditioned
319 *     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure
320 *     ......
321
322       KBL = MIN0( 8, N )
323 *[TP] KBL is a tuning parameter that defines the tile size in the
324 *     tiling of the p-q loops of pivot pairs. In general, an optimal
325 *     value of KBL depends on the matrix dimensions and on the
326 *     parameters of the computer's memory.
327 *
328       NBL = N / KBL
329       IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
330
331       BLSKIP = ( KBL**2 ) + 1
332 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
333
334       ROWSKIP = MIN0( 5, KBL )
335 *[TP] ROWSKIP is a tuning parameter.
336
337       LKAHEAD = 1
338 *[TP] LKAHEAD is a tuning parameter.
339       SWBAND = 0
340       PSKIPPED = 0
341 *
342       DO 1993 i = 1, NSWEEP
343 *     .. go go go ...
344 *
345          MXAAPQ = ZERO
346          MXSINJ = ZERO
347          ISWROT = 0
348 *
349          NOTROT = 0
350          PSKIPPED = 0
351 *
352          DO 2000 ibr = 1, NBL
353
354             igl = ( ibr-1 )*KBL + 1
355 *
356             DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
357 *
358                igl = igl + ir1*KBL
359 *
360                DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
361
362 *     .. de Rijk's pivoting
363                   q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
364                   IF( p.NE.q ) THEN
365                      CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
366                      IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1,
367      $                                      V( 1, q ), 1 )
368                      TEMP1 = SVA( p )
369                      SVA( p ) = SVA( q )
370                      SVA( q ) = TEMP1
371                      TEMP1 = D( p )
372                      D( p ) = D( q )
373                      D( q ) = TEMP1
374                   END IF
375 *
376                   IF( ir1.EQ.0 ) THEN
377 *
378 *        Column norms are periodically updated by explicit
379 *        norm computation.
380 *        Caveat:
381 *        Some BLAS implementations compute SNRM2(M,A(1,p),1)
382 *        as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may result in
383 *        overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and
384 *        undeflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
385 *        Hence, SNRM2 cannot be trusted, not even in the case when
386 *        the true norm is far from the under(over)flow boundaries.
387 *        If properly implemented SNRM2 is available, the IF-THEN-ELSE
388 *        below should read "AAPP = SNRM2( M, A(1,p), 1 ) * D(p)".
389 *
390                      IF( ( SVA( p ).LT.ROOTBIG ) .AND.
391      $                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
392                         SVA( p ) = SNRM2( M, A( 1, p ), 1 )*D( p )
393                      ELSE
394                         TEMP1 = ZERO
395                         AAPP = ONE
396                         CALL SLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
397                         SVA( p ) = TEMP1*SQRT( AAPP )*D( p )
398                      END IF
399                      AAPP = SVA( p )
400                   ELSE
401                      AAPP = SVA( p )
402                   END IF
403
404 *
405                   IF( AAPP.GT.ZERO ) THEN
406 *
407                      PSKIPPED = 0
408 *
409                      DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
410 *
411                         AAQQ = SVA( q )
412
413                         IF( AAQQ.GT.ZERO ) THEN
414 *
415                            AAPP0 = AAPP
416                            IF( AAQQ.GE.ONE ) THEN
417                               ROTOK = ( SMALL*AAPP ).LE.AAQQ
418                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
419                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
420      $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
421      $                                  / AAPP
422                               ELSE
423                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
424                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
425      $                                        M, 1, WORK, LDA, IERR )
426                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
427      $                                  1 )*D( q ) / AAQQ
428                               END IF
429                            ELSE
430                               ROTOK = AAPP.LE.( AAQQ / SMALL )
431                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
432                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
433      $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
434      $                                  / AAPP
435                               ELSE
436                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
437                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
438      $                                        M, 1, WORK, LDA, IERR )
439                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
440      $                                  1 )*D( p ) / AAPP
441                               END IF
442                            END IF
443 *
444                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
445 *
446 *        TO rotate or NOT to rotate, THAT is the question ...
447 *
448                            IF( ABS( AAPQ ).GT.TOL ) THEN
449 *
450 *           .. rotate
451 *           ROTATED = ROTATED + ONE
452 *
453                               IF( ir1.EQ.0 ) THEN
454                                  NOTROT = 0
455                                  PSKIPPED = 0
456                                  ISWROT = ISWROT + 1
457                               END IF
458 *
459                               IF( ROTOK ) THEN
460 *
461                                  AQOAP = AAQQ / AAPP
462                                  APOAQ = AAPP / AAQQ
463                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
464 *
465                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
466 *
467                                     T = HALF / THETA
468                                     FASTR( 3 ) = T*D( p ) / D( q )
469                                     FASTR( 4 ) = -T*D( q ) / D( p )
470                                     CALL SROTM( M, A( 1, p ), 1,
471      $                                          A( 1, q ), 1, FASTR )
472                                     IF( RSVEC )CALL SROTM( MVL,
473      $                                              V( 1, p ), 1,
474      $                                              V( 1, q ), 1,
475      $                                              FASTR )
476                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
477      $                                         ONE+T*APOAQ*AAPQ ) )
478                                     AAPP = AAPP*SQRT( AMAX1( ZERO, 
479      $                                         ONE-T*AQOAP*AAPQ ) )
480                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
481 *
482                                  ELSE
483 *
484 *                 .. choose correct signum for THETA and rotate
485 *
486                                     THSIGN = -SIGN( ONE, AAPQ )
487                                     T = ONE / ( THETA+THSIGN*
488      $                                  SQRT( ONE+THETA*THETA ) )
489                                     CS = SQRT( ONE / ( ONE+T*T ) )
490                                     SN = T*CS
491 *
492                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
493                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
494      $                                         ONE+T*APOAQ*AAPQ ) )
495                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
496      $                                     ONE-T*AQOAP*AAPQ ) )
497 *
498                                     APOAQ = D( p ) / D( q )
499                                     AQOAP = D( q ) / D( p )
500                                     IF( D( p ).GE.ONE ) THEN
501                                        IF( D( q ).GE.ONE ) THEN
502                                           FASTR( 3 ) = T*APOAQ
503                                           FASTR( 4 ) = -T*AQOAP
504                                           D( p ) = D( p )*CS
505                                           D( q ) = D( q )*CS
506                                           CALL SROTM( M, A( 1, p ), 1,
507      $                                                A( 1, q ), 1,
508      $                                                FASTR )
509                                           IF( RSVEC )CALL SROTM( MVL,
510      $                                        V( 1, p ), 1, V( 1, q ),
511      $                                        1, FASTR )
512                                        ELSE
513                                           CALL SAXPY( M, -T*AQOAP,
514      $                                                A( 1, q ), 1,
515      $                                                A( 1, p ), 1 )
516                                           CALL SAXPY( M, CS*SN*APOAQ,
517      $                                                A( 1, p ), 1,
518      $                                                A( 1, q ), 1 )
519                                           D( p ) = D( p )*CS
520                                           D( q ) = D( q ) / CS
521                                           IF( RSVEC ) THEN
522                                              CALL SAXPY( MVL, -T*AQOAP,
523      $                                                   V( 1, q ), 1,
524      $                                                   V( 1, p ), 1 )
525                                              CALL SAXPY( MVL,
526      $                                                   CS*SN*APOAQ,
527      $                                                   V( 1, p ), 1,
528      $                                                   V( 1, q ), 1 )
529                                           END IF
530                                        END IF
531                                     ELSE
532                                        IF( D( q ).GE.ONE ) THEN
533                                           CALL SAXPY( M, T*APOAQ,
534      $                                                A( 1, p ), 1,
535      $                                                A( 1, q ), 1 )
536                                           CALL SAXPY( M, -CS*SN*AQOAP,
537      $                                                A( 1, q ), 1,
538      $                                                A( 1, p ), 1 )
539                                           D( p ) = D( p ) / CS
540                                           D( q ) = D( q )*CS
541                                           IF( RSVEC ) THEN
542                                              CALL SAXPY( MVL, T*APOAQ,
543      $                                                   V( 1, p ), 1,
544      $                                                   V( 1, q ), 1 )
545                                              CALL SAXPY( MVL,
546      $                                                   -CS*SN*AQOAP,
547      $                                                   V( 1, q ), 1,
548      $                                                   V( 1, p ), 1 )
549                                           END IF
550                                        ELSE
551                                           IF( D( p ).GE.D( q ) ) THEN
552                                              CALL SAXPY( M, -T*AQOAP,
553      $                                                   A( 1, q ), 1,
554      $                                                   A( 1, p ), 1 )
555                                              CALL SAXPY( M, CS*SN*APOAQ,
556      $                                                   A( 1, p ), 1,
557      $                                                   A( 1, q ), 1 )
558                                              D( p ) = D( p )*CS
559                                              D( q ) = D( q ) / CS
560                                              IF( RSVEC ) THEN
561                                                 CALL SAXPY( MVL,
562      $                                               -T*AQOAP,
563      $                                               V( 1, q ), 1,
564      $                                               V( 1, p ), 1 )
565                                                 CALL SAXPY( MVL,
566      $                                               CS*SN*APOAQ,
567      $                                               V( 1, p ), 1,
568      $                                               V( 1, q ), 1 )
569                                              END IF
570                                           ELSE
571                                              CALL SAXPY( M, T*APOAQ,
572      $                                                   A( 1, p ), 1,
573      $                                                   A( 1, q ), 1 )
574                                              CALL SAXPY( M,
575      $                                                   -CS*SN*AQOAP,
576      $                                                   A( 1, q ), 1,
577      $                                                   A( 1, p ), 1 )
578                                              D( p ) = D( p ) / CS
579                                              D( q ) = D( q )*CS
580                                              IF( RSVEC ) THEN
581                                                 CALL SAXPY( MVL,
582      $                                               T*APOAQ, V( 1, p ),
583      $                                               1, V( 1, q ), 1 )
584                                                 CALL SAXPY( MVL,
585      $                                               -CS*SN*AQOAP,
586      $                                               V( 1, q ), 1,
587      $                                               V( 1, p ), 1 )
588                                              END IF
589                                           END IF
590                                        END IF
591                                     END IF
592                                  END IF
593 *
594                               ELSE
595 *              .. have to use modified Gram-Schmidt like transformation
596                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
597                                  CALL SLASCL( 'G', 0, 0, AAPP, ONE, M,
598      $                                        1, WORK, LDA, IERR )
599                                  CALL SLASCL( 'G', 0, 0, AAQQ, ONE, M,
600      $                                        1, A( 1, q ), LDA, IERR )
601                                  TEMP1 = -AAPQ*D( p ) / D( q )
602                                  CALL SAXPY( M, TEMP1, WORK, 1,
603      $                                       A( 1, q ), 1 )
604                                  CALL SLASCL( 'G', 0, 0, ONE, AAQQ, M,
605      $                                        1, A( 1, q ), LDA, IERR )
606                                  SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
607      $                                      ONE-AAPQ*AAPQ ) )
608                                  MXSINJ = AMAX1( MXSINJ, SFMIN )
609                               END IF
610 *           END IF ROTOK THEN ... ELSE
611 *
612 *           In the case of cancellation in updating SVA(q), SVA(p)
613 *           recompute SVA(q), SVA(p).
614                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
615      $                            THEN
616                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
617      $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
618                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
619      $                                         D( q )
620                                  ELSE
621                                     T = ZERO
622                                     AAQQ = ONE
623                                     CALL SLASSQ( M, A( 1, q ), 1, T,
624      $                                           AAQQ )
625                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
626                                  END IF
627                               END IF
628                               IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
629                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
630      $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
631                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
632      $                                     D( p )
633                                  ELSE
634                                     T = ZERO
635                                     AAPP = ONE
636                                     CALL SLASSQ( M, A( 1, p ), 1, T,
637      $                                           AAPP )
638                                     AAPP = T*SQRT( AAPP )*D( p )
639                                  END IF
640                                  SVA( p ) = AAPP
641                               END IF
642 *
643                            ELSE
644 *        A(:,p) and A(:,q) already numerically orthogonal
645                               IF( ir1.EQ.0 )NOTROT = NOTROT + 1
646                               PSKIPPED = PSKIPPED + 1
647                            END IF
648                         ELSE
649 *        A(:,q) is zero column
650                            IF( ir1.EQ.0 )NOTROT = NOTROT + 1
651                            PSKIPPED = PSKIPPED + 1
652                         END IF
653 *
654                         IF( ( i.LE.SWBAND ) .AND.
655      $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
656                            IF( ir1.EQ.0 )AAPP = -AAPP
657                            NOTROT = 0
658                            GO TO 2103
659                         END IF
660 *
661  2002                CONTINUE
662 *     END q-LOOP
663 *
664  2103                CONTINUE
665 *     bailed out of q-loop
666
667                      SVA( p ) = AAPP
668
669                   ELSE
670                      SVA( p ) = AAPP
671                      IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
672      $                   NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
673                   END IF
674 *
675  2001          CONTINUE
676 *     end of the p-loop
677 *     end of doing the block ( ibr, ibr )
678  1002       CONTINUE
679 *     end of ir1-loop
680 *
681 *........................................................
682 * ... go to the off diagonal blocks
683 *
684             igl = ( ibr-1 )*KBL + 1
685 *
686             DO 2010 jbc = ibr + 1, NBL
687 *
688                jgl = ( jbc-1 )*KBL + 1
689 *
690 *        doing the block at ( ibr, jbc )
691 *
692                IJBLSK = 0
693                DO 2100 p = igl, MIN0( igl+KBL-1, N )
694 *
695                   AAPP = SVA( p )
696 *
697                   IF( AAPP.GT.ZERO ) THEN
698 *
699                      PSKIPPED = 0
700 *
701                      DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
702 *
703                         AAQQ = SVA( q )
704 *
705                         IF( AAQQ.GT.ZERO ) THEN
706                            AAPP0 = AAPP
707 *
708 *     .. M x 2 Jacobi SVD ..
709 *
710 *        .. Safe Gram matrix computation ..
711 *
712                            IF( AAQQ.GE.ONE ) THEN
713                               IF( AAPP.GE.AAQQ ) THEN
714                                  ROTOK = ( SMALL*AAPP ).LE.AAQQ
715                               ELSE
716                                  ROTOK = ( SMALL*AAQQ ).LE.AAPP
717                               END IF
718                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
719                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
720      $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
721      $                                  / AAPP
722                               ELSE
723                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
724                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
725      $                                        M, 1, WORK, LDA, IERR )
726                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
727      $                                  1 )*D( q ) / AAQQ
728                               END IF
729                            ELSE
730                               IF( AAPP.GE.AAQQ ) THEN
731                                  ROTOK = AAPP.LE.( AAQQ / SMALL )
732                               ELSE
733                                  ROTOK = AAQQ.LE.( AAPP / SMALL )
734                               END IF
735                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
736                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
737      $                                  q ), 1 )*D( p )*D( q ) / AAQQ )
738      $                                  / AAPP
739                               ELSE
740                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
741                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
742      $                                        M, 1, WORK, LDA, IERR )
743                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
744      $                                  1 )*D( p ) / AAPP
745                               END IF
746                            END IF
747 *
748                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
749 *
750 *        TO rotate or NOT to rotate, THAT is the question ...
751 *
752                            IF( ABS( AAPQ ).GT.TOL ) THEN
753                               NOTROT = 0
754 *           ROTATED  = ROTATED + 1
755                               PSKIPPED = 0
756                               ISWROT = ISWROT + 1
757 *
758                               IF( ROTOK ) THEN
759 *
760                                  AQOAP = AAQQ / AAPP
761                                  APOAQ = AAPP / AAQQ
762                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
763                                  IF( AAQQ.GT.AAPP0 )THETA = -THETA
764 *
765                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
766                                     T = HALF / THETA
767                                     FASTR( 3 ) = T*D( p ) / D( q )
768                                     FASTR( 4 ) = -T*D( q ) / D( p )
769                                     CALL SROTM( M, A( 1, p ), 1,
770      $                                          A( 1, q ), 1, FASTR )
771                                     IF( RSVEC )CALL SROTM( MVL,
772      $                                              V( 1, p ), 1,
773      $                                              V( 1, q ), 1,
774      $                                              FASTR )
775                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
776      $                                         ONE+T*APOAQ*AAPQ ) )
777                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
778      $                                     ONE-T*AQOAP*AAPQ ) )
779                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
780                                  ELSE
781 *
782 *                 .. choose correct signum for THETA and rotate
783 *
784                                     THSIGN = -SIGN( ONE, AAPQ )
785                                     IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
786                                     T = ONE / ( THETA+THSIGN*
787      $                                  SQRT( ONE+THETA*THETA ) )
788                                     CS = SQRT( ONE / ( ONE+T*T ) )
789                                     SN = T*CS
790                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
791                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
792      $                                         ONE+T*APOAQ*AAPQ ) )
793                                     AAPP = AAPP*SQRT( AMAX1( ZERO, 
794      $                                         ONE-T*AQOAP*AAPQ ) )
795 *
796                                     APOAQ = D( p ) / D( q )
797                                     AQOAP = D( q ) / D( p )
798                                     IF( D( p ).GE.ONE ) THEN
799 *
800                                        IF( D( q ).GE.ONE ) THEN
801                                           FASTR( 3 ) = T*APOAQ
802                                           FASTR( 4 ) = -T*AQOAP
803                                           D( p ) = D( p )*CS
804                                           D( q ) = D( q )*CS
805                                           CALL SROTM( M, A( 1, p ), 1,
806      $                                                A( 1, q ), 1,
807      $                                                FASTR )
808                                           IF( RSVEC )CALL SROTM( MVL,
809      $                                        V( 1, p ), 1, V( 1, q ),
810      $                                        1, FASTR )
811                                        ELSE
812                                           CALL SAXPY( M, -T*AQOAP,
813      $                                                A( 1, q ), 1,
814      $                                                A( 1, p ), 1 )
815                                           CALL SAXPY( M, CS*SN*APOAQ,
816      $                                                A( 1, p ), 1,
817      $                                                A( 1, q ), 1 )
818                                           IF( RSVEC ) THEN
819                                              CALL SAXPY( MVL, -T*AQOAP,
820      $                                                   V( 1, q ), 1,
821      $                                                   V( 1, p ), 1 )
822                                              CALL SAXPY( MVL,
823      $                                                   CS*SN*APOAQ,
824      $                                                   V( 1, p ), 1,
825      $                                                   V( 1, q ), 1 )
826                                           END IF
827                                           D( p ) = D( p )*CS
828                                           D( q ) = D( q ) / CS
829                                        END IF
830                                     ELSE
831                                        IF( D( q ).GE.ONE ) THEN
832                                           CALL SAXPY( M, T*APOAQ,
833      $                                                A( 1, p ), 1,
834      $                                                A( 1, q ), 1 )
835                                           CALL SAXPY( M, -CS*SN*AQOAP,
836      $                                                A( 1, q ), 1,
837      $                                                A( 1, p ), 1 )
838                                           IF( RSVEC ) THEN
839                                              CALL SAXPY( MVL, T*APOAQ,
840      $                                                   V( 1, p ), 1,
841      $                                                   V( 1, q ), 1 )
842                                              CALL SAXPY( MVL,
843      $                                                   -CS*SN*AQOAP,
844      $                                                   V( 1, q ), 1,
845      $                                                   V( 1, p ), 1 )
846                                           END IF
847                                           D( p ) = D( p ) / CS
848                                           D( q ) = D( q )*CS
849                                        ELSE
850                                           IF( D( p ).GE.D( q ) ) THEN
851                                              CALL SAXPY( M, -T*AQOAP,
852      $                                                   A( 1, q ), 1,
853      $                                                   A( 1, p ), 1 )
854                                              CALL SAXPY( M, CS*SN*APOAQ,
855      $                                                   A( 1, p ), 1,
856      $                                                   A( 1, q ), 1 )
857                                              D( p ) = D( p )*CS
858                                              D( q ) = D( q ) / CS
859                                              IF( RSVEC ) THEN
860                                                 CALL SAXPY( MVL,
861      $                                               -T*AQOAP,
862      $                                               V( 1, q ), 1,
863      $                                               V( 1, p ), 1 )
864                                                 CALL SAXPY( MVL,
865      $                                               CS*SN*APOAQ,
866      $                                               V( 1, p ), 1,
867      $                                               V( 1, q ), 1 )
868                                              END IF
869                                           ELSE
870                                              CALL SAXPY( M, T*APOAQ,
871      $                                                   A( 1, p ), 1,
872      $                                                   A( 1, q ), 1 )
873                                              CALL SAXPY( M,
874      $                                                   -CS*SN*AQOAP,
875      $                                                   A( 1, q ), 1,
876      $                                                   A( 1, p ), 1 )
877                                              D( p ) = D( p ) / CS
878                                              D( q ) = D( q )*CS
879                                              IF( RSVEC ) THEN
880                                                 CALL SAXPY( MVL,
881      $                                               T*APOAQ, V( 1, p ),
882      $                                               1, V( 1, q ), 1 )
883                                                 CALL SAXPY( MVL,
884      $                                               -CS*SN*AQOAP,
885      $                                               V( 1, q ), 1,
886      $                                               V( 1, p ), 1 )
887                                              END IF
888                                           END IF
889                                        END IF
890                                     END IF
891                                  END IF
892 *
893                               ELSE
894                                  IF( AAPP.GT.AAQQ ) THEN
895                                     CALL SCOPY( M, A( 1, p ), 1, WORK,
896      $                                          1 )
897                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
898      $                                           M, 1, WORK, LDA, IERR )
899                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
900      $                                           M, 1, A( 1, q ), LDA,
901      $                                           IERR )
902                                     TEMP1 = -AAPQ*D( p ) / D( q )
903                                     CALL SAXPY( M, TEMP1, WORK, 1,
904      $                                          A( 1, q ), 1 )
905                                     CALL SLASCL( 'G', 0, 0, ONE, AAQQ,
906      $                                           M, 1, A( 1, q ), LDA,
907      $                                           IERR )
908                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
909      $                                         ONE-AAPQ*AAPQ ) )
910                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
911                                  ELSE
912                                     CALL SCOPY( M, A( 1, q ), 1, WORK,
913      $                                          1 )
914                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
915      $                                           M, 1, WORK, LDA, IERR )
916                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
917      $                                           M, 1, A( 1, p ), LDA,
918      $                                           IERR )
919                                     TEMP1 = -AAPQ*D( q ) / D( p )
920                                     CALL SAXPY( M, TEMP1, WORK, 1,
921      $                                          A( 1, p ), 1 )
922                                     CALL SLASCL( 'G', 0, 0, ONE, AAPP,
923      $                                           M, 1, A( 1, p ), LDA,
924      $                                           IERR )
925                                     SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
926      $                                         ONE-AAPQ*AAPQ ) )
927                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
928                                  END IF
929                               END IF
930 *           END IF ROTOK THEN ... ELSE
931 *
932 *           In the case of cancellation in updating SVA(q)
933 *           .. recompute SVA(q)
934                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
935      $                            THEN
936                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
937      $                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
938                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
939      $                                         D( q )
940                                  ELSE
941                                     T = ZERO
942                                     AAQQ = ONE
943                                     CALL SLASSQ( M, A( 1, q ), 1, T,
944      $                                           AAQQ )
945                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
946                                  END IF
947                               END IF
948                               IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
949                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
950      $                               ( AAPP.GT.ROOTSFMIN ) ) THEN
951                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
952      $                                     D( p )
953                                  ELSE
954                                     T = ZERO
955                                     AAPP = ONE
956                                     CALL SLASSQ( M, A( 1, p ), 1, T,
957      $                                           AAPP )
958                                     AAPP = T*SQRT( AAPP )*D( p )
959                                  END IF
960                                  SVA( p ) = AAPP
961                               END IF
962 *              end of OK rotation
963                            ELSE
964                               NOTROT = NOTROT + 1
965                               PSKIPPED = PSKIPPED + 1
966                               IJBLSK = IJBLSK + 1
967                            END IF
968                         ELSE
969                            NOTROT = NOTROT + 1
970                            PSKIPPED = PSKIPPED + 1
971                            IJBLSK = IJBLSK + 1
972                         END IF
973 *
974                         IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
975      $                      THEN
976                            SVA( p ) = AAPP
977                            NOTROT = 0
978                            GO TO 2011
979                         END IF
980                         IF( ( i.LE.SWBAND ) .AND.
981      $                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
982                            AAPP = -AAPP
983                            NOTROT = 0
984                            GO TO 2203
985                         END IF
986 *
987  2200                CONTINUE
988 *        end of the q-loop
989  2203                CONTINUE
990 *
991                      SVA( p ) = AAPP
992 *
993                   ELSE
994                      IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
995      $                   MIN0( jgl+KBL-1, N ) - jgl + 1
996                      IF( AAPP.LT.ZERO )NOTROT = 0
997                   END IF
998
999  2100          CONTINUE
1000 *     end of the p-loop
1001  2010       CONTINUE
1002 *     end of the jbc-loop
1003  2011       CONTINUE
1004 *2011 bailed out of the jbc-loop
1005             DO 2012 p = igl, MIN0( igl+KBL-1, N )
1006                SVA( p ) = ABS( SVA( p ) )
1007  2012       CONTINUE
1008 *
1009  2000    CONTINUE
1010 *2000 :: end of the ibr-loop
1011 *
1012 *     .. update SVA(N)
1013          IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
1014      $       THEN
1015             SVA( N ) = SNRM2( M, A( 1, N ), 1 )*D( N )
1016          ELSE
1017             T = ZERO
1018             AAPP = ONE
1019             CALL SLASSQ( M, A( 1, N ), 1, T, AAPP )
1020             SVA( N ) = T*SQRT( AAPP )*D( N )
1021          END IF
1022 *
1023 *     Additional steering devices
1024 *
1025          IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
1026      $       ( ISWROT.LE.N ) ) )SWBAND = i
1027 *
1028          IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.FLOAT( N )*TOL ) .AND.
1029      $       ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
1030             GO TO 1994
1031          END IF
1032 *
1033          IF( NOTROT.GE.EMPTSW )GO TO 1994
1034
1035  1993 CONTINUE
1036 *     end i=1:NSWEEP loop
1037 * #:) Reaching this point means that the procedure has comleted the given
1038 *     number of iterations.
1039       INFO = NSWEEP - 1
1040       GO TO 1995
1041  1994 CONTINUE
1042 * #:) Reaching this point means that during the i-th sweep all pivots were
1043 *     below the given tolerance, causing early exit.
1044 *
1045       INFO = 0
1046 * #:) INFO = 0 confirms successful iterations.
1047  1995 CONTINUE
1048 *
1049 *     Sort the vector D.
1050       DO 5991 p = 1, N - 1
1051          q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
1052          IF( p.NE.q ) THEN
1053             TEMP1 = SVA( p )
1054             SVA( p ) = SVA( q )
1055             SVA( q ) = TEMP1
1056             TEMP1 = D( p )
1057             D( p ) = D( q )
1058             D( q ) = TEMP1
1059             CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
1060             IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
1061          END IF
1062  5991 CONTINUE
1063 *
1064       RETURN
1065 *     ..
1066 *     .. END OF SGSVJ0
1067 *     ..
1068       END