Merged revisions 609-614 via svnmerge from
[platform/upstream/lapack.git] / SRC / sgsvj0.f
1       SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
2      +                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
3 *
4 *  -- LAPACK routine (version 3.2)                                    --
5 *
6 *  -- Contributed by Zlatko Drmac of the University of Zagreb and     --
7 *  -- Kresimir Veselic of the Fernuniversitaet Hagen                  --
8 *  -- November 2008                                                   --
9 *
10 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
11 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
12 *
13 * This routine is also part of SIGMA (version 1.23, October 23. 2008.)
14 * SIGMA is a library of algorithms for highly accurate algorithms for
15 * computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the
16 * eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0.
17 *
18       IMPLICIT           NONE
19 *     ..
20 *     .. Scalar Arguments ..
21       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
22       REAL               EPS, SFMIN, TOL
23       CHARACTER*1        JOBV
24 *     ..
25 *     .. Array Arguments ..
26       REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
27      +                   WORK( LWORK )
28 *     ..
29 *
30 *  Purpose
31 *  =======
32 *
33 *  SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
34 *  purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
35 *  it does not check convergence (stopping criterion). Few tuning
36 *  parameters (marked by [TP]) are available for the implementer.
37 *
38 *  Further details
39 *  ~~~~~~~~~~~~~~~
40 *  SGSVJ0 is used just to enable SGESVJ to call a simplified version of
41 *  itself to work on a submatrix of the original matrix.
42 *
43 *  Contributors
44 *  ~~~~~~~~~~~~
45 *  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
46 *
47 *  Bugs, Examples and Comments
48 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~
49 *  Please report all bugs and send interesting test examples and comments to
50 *  drmac@math.hr. Thank you.
51 *
52 *  Arguments
53 *  =========
54 *
55 *  JOBV    (input) CHARACTER*1
56 *          Specifies whether the output from this procedure is used
57 *          to compute the matrix V:
58 *          = 'V': the product of the Jacobi rotations is accumulated
59 *                 by postmulyiplying the N-by-N array V.
60 *                (See the description of V.)
61 *          = 'A': the product of the Jacobi rotations is accumulated
62 *                 by postmulyiplying the MV-by-N array V.
63 *                (See the descriptions of MV and V.)
64 *          = 'N': the Jacobi rotations are not accumulated.
65 *
66 *  M       (input) INTEGER
67 *          The number of rows of the input matrix A.  M >= 0.
68 *
69 *  N       (input) INTEGER
70 *          The number of columns of the input matrix A.
71 *          M >= N >= 0.
72 *
73 *  A       (input/output) REAL array, dimension (LDA,N)
74 *          On entry, M-by-N matrix A, such that A*diag(D) represents
75 *          the input matrix.
76 *          On exit,
77 *          A_onexit * D_onexit represents the input matrix A*diag(D)
78 *          post-multiplied by a sequence of Jacobi rotations, where the
79 *          rotation threshold and the total number of sweeps are given in
80 *          TOL and NSWEEP, respectively.
81 *          (See the descriptions of D, TOL and NSWEEP.)
82 *
83 *  LDA     (input) INTEGER
84 *          The leading dimension of the array A.  LDA >= max(1,M).
85 *
86 *  D       (input/workspace/output) REAL array, dimension (N)
87 *          The array D accumulates the scaling factors from the fast scaled
88 *          Jacobi rotations.
89 *          On entry, A*diag(D) represents the input matrix.
90 *          On exit, A_onexit*diag(D_onexit) represents the input matrix
91 *          post-multiplied by a sequence of Jacobi rotations, where the
92 *          rotation threshold and the total number of sweeps are given in
93 *          TOL and NSWEEP, respectively.
94 *          (See the descriptions of A, TOL and NSWEEP.)
95 *
96 *  SVA     (input/workspace/output) REAL array, dimension (N)
97 *          On entry, SVA contains the Euclidean norms of the columns of
98 *          the matrix A*diag(D).
99 *          On exit, SVA contains the Euclidean norms of the columns of
100 *          the matrix onexit*diag(D_onexit).
101 *
102 *  MV      (input) INTEGER
103 *          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
104 *                           sequence of Jacobi rotations.
105 *          If JOBV = 'N',   then MV is not referenced.
106 *
107 *  V       (input/output) REAL array, dimension (LDV,N)
108 *          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
109 *                           sequence of Jacobi rotations.
110 *          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
111 *                           sequence of Jacobi rotations.
112 *          If JOBV = 'N',   then V is not referenced.
113 *
114 *  LDV     (input) INTEGER
115 *          The leading dimension of the array V,  LDV >= 1.
116 *          If JOBV = 'V', LDV .GE. N.
117 *          If JOBV = 'A', LDV .GE. MV.
118 *
119 *  EPS     (input) INTEGER
120 *          EPS = SLAMCH('Epsilon')
121 *
122 *  SFMIN   (input) INTEGER
123 *          SFMIN = SLAMCH('Safe Minimum')
124 *
125 *  TOL     (input) REAL
126 *          TOL is the threshold for Jacobi rotations. For a pair
127 *          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
128 *          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
129 *
130 *  NSWEEP  (input) INTEGER
131 *          NSWEEP is the number of sweeps of Jacobi rotations to be
132 *          performed.
133 *
134 *  WORK    (workspace) REAL array, dimension LWORK.
135 *
136 *  LWORK   (input) INTEGER
137 *          LWORK is the dimension of WORK. LWORK .GE. M.
138 *
139 *  INFO    (output) INTEGER
140 *          = 0 : successful exit.
141 *          < 0 : if INFO = -i, then the i-th argument had an illegal value
142 *
143 *  =====================================================================
144 *
145 *     .. Local Parameters ..
146       REAL               ZERO, HALF, ONE, TWO
147       PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
148      +                   TWO = 2.0E0 )
149 *     ..
150 *     .. Local Scalars ..
151       REAL               AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
152      +                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
153      +                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
154      +                   THSIGN
155       INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
156      +                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
157      +                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
158       LOGICAL            APPLV, ROTOK, RSVEC
159 *     ..
160 *     .. Local Arrays ..
161       REAL               FASTR( 5 )
162 *     ..
163 *     .. Intrinsic Functions ..
164       INTRINSIC          ABS, AMAX1, AMIN1, FLOAT, MIN0, SIGN, SQRT
165 *     ..
166 *     .. External Functions ..
167       REAL               SDOT, SNRM2
168       INTEGER            ISAMAX
169       LOGICAL            LSAME
170       EXTERNAL           ISAMAX, LSAME, SDOT, SNRM2
171 *     ..
172 *     .. External Subroutines ..
173       EXTERNAL           SAXPY, SCOPY, SLASCL, SLASSQ, SROTM, SSWAP
174 *     ..
175 *     .. Executable Statements ..
176 *
177 *     Test the input parameters.
178 *
179       APPLV = LSAME( JOBV, 'A' )
180       RSVEC = LSAME( JOBV, 'V' )
181       IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
182          INFO = -1
183       ELSE IF( M.LT.0 ) THEN
184          INFO = -2
185       ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
186          INFO = -3
187       ELSE IF( LDA.LT.M ) THEN
188          INFO = -5
189       ELSE IF( MV.LT.0 ) THEN
190          INFO = -8
191       ELSE IF( LDV.LT.M ) THEN
192          INFO = -10
193       ELSE IF( TOL.LE.EPS ) THEN
194          INFO = -13
195       ELSE IF( NSWEEP.LT.0 ) THEN
196          INFO = -14
197       ELSE IF( LWORK.LT.M ) THEN
198          INFO = -16
199       ELSE
200          INFO = 0
201       END IF
202 *
203 *     #:(
204       IF( INFO.NE.0 ) THEN
205          CALL XERBLA( 'SGSVJ0', -INFO )
206          RETURN
207       END IF
208 *
209       IF( RSVEC ) THEN
210          MVL = N
211       ELSE IF( APPLV ) THEN
212          MVL = MV
213       END IF
214       RSVEC = RSVEC .OR. APPLV
215
216       ROOTEPS = SQRT( EPS )
217       ROOTSFMIN = SQRT( SFMIN )
218       SMALL = SFMIN / EPS
219       BIG = ONE / SFMIN
220       ROOTBIG = ONE / ROOTSFMIN
221       BIGTHETA = ONE / ROOTEPS
222       ROOTTOL = SQRT( TOL )
223 *
224 *
225 *     .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
226 *
227       EMPTSW = ( N*( N-1 ) ) / 2
228       NOTROT = 0
229       FASTR( 1 ) = ZERO
230 *
231 *     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
232 *
233
234       SWBAND = 0
235 *[TP] SWBAND is a tuning parameter. It is meaningful and effective
236 *     if SGESVJ is used as a computational routine in the preconditioned
237 *     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure
238 *     ......
239
240       KBL = MIN0( 8, N )
241 *[TP] KBL is a tuning parameter that defines the tile size in the
242 *     tiling of the p-q loops of pivot pairs. In general, an optimal
243 *     value of KBL depends on the matrix dimensions and on the
244 *     parameters of the computer's memory.
245 *
246       NBL = N / KBL
247       IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
248
249       BLSKIP = ( KBL**2 ) + 1
250 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
251
252       ROWSKIP = MIN0( 5, KBL )
253 *[TP] ROWSKIP is a tuning parameter.
254
255       LKAHEAD = 1
256 *[TP] LKAHEAD is a tuning parameter.
257       SWBAND = 0
258       PSKIPPED = 0
259 *
260       DO 1993 i = 1, NSWEEP
261 *     .. go go go ...
262 *
263          MXAAPQ = ZERO
264          MXSINJ = ZERO
265          ISWROT = 0
266 *
267          NOTROT = 0
268          PSKIPPED = 0
269 *
270          DO 2000 ibr = 1, NBL
271
272             igl = ( ibr-1 )*KBL + 1
273 *
274             DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
275 *
276                igl = igl + ir1*KBL
277 *
278                DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
279
280 *     .. de Rijk's pivoting
281                   q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
282                   IF( p.NE.q ) THEN
283                      CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
284                      IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1,
285      +                                      V( 1, q ), 1 )
286                      TEMP1 = SVA( p )
287                      SVA( p ) = SVA( q )
288                      SVA( q ) = TEMP1
289                      TEMP1 = D( p )
290                      D( p ) = D( q )
291                      D( q ) = TEMP1
292                   END IF
293 *
294                   IF( ir1.EQ.0 ) THEN
295 *
296 *        Column norms are periodically updated by explicit
297 *        norm computation.
298 *        Caveat:
299 *        Some BLAS implementations compute SNRM2(M,A(1,p),1)
300 *        as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may result in
301 *        overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and
302 *        undeflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
303 *        Hence, SNRM2 cannot be trusted, not even in the case when
304 *        the true norm is far from the under(over)flow boundaries.
305 *        If properly implemented SNRM2 is available, the IF-THEN-ELSE
306 *        below should read "AAPP = SNRM2( M, A(1,p), 1 ) * D(p)".
307 *
308                      IF( ( SVA( p ).LT.ROOTBIG ) .AND.
309      +                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
310                         SVA( p ) = SNRM2( M, A( 1, p ), 1 )*D( p )
311                      ELSE
312                         TEMP1 = ZERO
313                         AAPP = ZERO
314                         CALL SLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
315                         SVA( p ) = TEMP1*SQRT( AAPP )*D( p )
316                      END IF
317                      AAPP = SVA( p )
318                   ELSE
319                      AAPP = SVA( p )
320                   END IF
321
322 *
323                   IF( AAPP.GT.ZERO ) THEN
324 *
325                      PSKIPPED = 0
326 *
327                      DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
328 *
329                         AAQQ = SVA( q )
330
331                         IF( AAQQ.GT.ZERO ) THEN
332 *
333                            AAPP0 = AAPP
334                            IF( AAQQ.GE.ONE ) THEN
335                               ROTOK = ( SMALL*AAPP ).LE.AAQQ
336                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
337                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
338      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
339      +                                  / AAPP
340                               ELSE
341                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
342                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
343      +                                        M, 1, WORK, LDA, IERR )
344                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
345      +                                  1 )*D( q ) / AAQQ
346                               END IF
347                            ELSE
348                               ROTOK = AAPP.LE.( AAQQ / SMALL )
349                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
350                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
351      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
352      +                                  / AAPP
353                               ELSE
354                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
355                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
356      +                                        M, 1, WORK, LDA, IERR )
357                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
358      +                                  1 )*D( p ) / AAPP
359                               END IF
360                            END IF
361 *
362                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
363 *
364 *        TO rotate or NOT to rotate, THAT is the question ...
365 *
366                            IF( ABS( AAPQ ).GT.TOL ) THEN
367 *
368 *           .. rotate
369 *           ROTATED = ROTATED + ONE
370 *
371                               IF( ir1.EQ.0 ) THEN
372                                  NOTROT = 0
373                                  PSKIPPED = 0
374                                  ISWROT = ISWROT + 1
375                               END IF
376 *
377                               IF( ROTOK ) THEN
378 *
379                                  AQOAP = AAQQ / AAPP
380                                  APOAQ = AAPP / AAQQ
381                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
382 *
383                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
384 *
385                                     T = HALF / THETA
386                                     FASTR( 3 ) = T*D( p ) / D( q )
387                                     FASTR( 4 ) = -T*D( q ) / D( p )
388                                     CALL SROTM( M, A( 1, p ), 1,
389      +                                          A( 1, q ), 1, FASTR )
390                                     IF( RSVEC )CALL SROTM( MVL,
391      +                                              V( 1, p ), 1,
392      +                                              V( 1, q ), 1,
393      +                                              FASTR )
394                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
395      +                                         ONE+T*APOAQ*AAPQ ) )
396                                     AAPP = AAPP*SQRT( ONE-T*AQOAP*AAPQ )
397                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
398 *
399                                  ELSE
400 *
401 *                 .. choose correct signum for THETA and rotate
402 *
403                                     THSIGN = -SIGN( ONE, AAPQ )
404                                     T = ONE / ( THETA+THSIGN*
405      +                                  SQRT( ONE+THETA*THETA ) )
406                                     CS = SQRT( ONE / ( ONE+T*T ) )
407                                     SN = T*CS
408 *
409                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
410                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
411      +                                         ONE+T*APOAQ*AAPQ ) )
412                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
413      +                                     ONE-T*AQOAP*AAPQ ) )
414 *
415                                     APOAQ = D( p ) / D( q )
416                                     AQOAP = D( q ) / D( p )
417                                     IF( D( p ).GE.ONE ) THEN
418                                        IF( D( q ).GE.ONE ) THEN
419                                           FASTR( 3 ) = T*APOAQ
420                                           FASTR( 4 ) = -T*AQOAP
421                                           D( p ) = D( p )*CS
422                                           D( q ) = D( q )*CS
423                                           CALL SROTM( M, A( 1, p ), 1,
424      +                                                A( 1, q ), 1,
425      +                                                FASTR )
426                                           IF( RSVEC )CALL SROTM( MVL,
427      +                                        V( 1, p ), 1, V( 1, q ),
428      +                                        1, FASTR )
429                                        ELSE
430                                           CALL SAXPY( M, -T*AQOAP,
431      +                                                A( 1, q ), 1,
432      +                                                A( 1, p ), 1 )
433                                           CALL SAXPY( M, CS*SN*APOAQ,
434      +                                                A( 1, p ), 1,
435      +                                                A( 1, q ), 1 )
436                                           D( p ) = D( p )*CS
437                                           D( q ) = D( q ) / CS
438                                           IF( RSVEC ) THEN
439                                              CALL SAXPY( MVL, -T*AQOAP,
440      +                                                   V( 1, q ), 1,
441      +                                                   V( 1, p ), 1 )
442                                              CALL SAXPY( MVL,
443      +                                                   CS*SN*APOAQ,
444      +                                                   V( 1, p ), 1,
445      +                                                   V( 1, q ), 1 )
446                                           END IF
447                                        END IF
448                                     ELSE
449                                        IF( D( q ).GE.ONE ) THEN
450                                           CALL SAXPY( M, T*APOAQ,
451      +                                                A( 1, p ), 1,
452      +                                                A( 1, q ), 1 )
453                                           CALL SAXPY( M, -CS*SN*AQOAP,
454      +                                                A( 1, q ), 1,
455      +                                                A( 1, p ), 1 )
456                                           D( p ) = D( p ) / CS
457                                           D( q ) = D( q )*CS
458                                           IF( RSVEC ) THEN
459                                              CALL SAXPY( MVL, T*APOAQ,
460      +                                                   V( 1, p ), 1,
461      +                                                   V( 1, q ), 1 )
462                                              CALL SAXPY( MVL,
463      +                                                   -CS*SN*AQOAP,
464      +                                                   V( 1, q ), 1,
465      +                                                   V( 1, p ), 1 )
466                                           END IF
467                                        ELSE
468                                           IF( D( p ).GE.D( q ) ) THEN
469                                              CALL SAXPY( M, -T*AQOAP,
470      +                                                   A( 1, q ), 1,
471      +                                                   A( 1, p ), 1 )
472                                              CALL SAXPY( M, CS*SN*APOAQ,
473      +                                                   A( 1, p ), 1,
474      +                                                   A( 1, q ), 1 )
475                                              D( p ) = D( p )*CS
476                                              D( q ) = D( q ) / CS
477                                              IF( RSVEC ) THEN
478                                                 CALL SAXPY( MVL,
479      +                                               -T*AQOAP,
480      +                                               V( 1, q ), 1,
481      +                                               V( 1, p ), 1 )
482                                                 CALL SAXPY( MVL,
483      +                                               CS*SN*APOAQ,
484      +                                               V( 1, p ), 1,
485      +                                               V( 1, q ), 1 )
486                                              END IF
487                                           ELSE
488                                              CALL SAXPY( M, T*APOAQ,
489      +                                                   A( 1, p ), 1,
490      +                                                   A( 1, q ), 1 )
491                                              CALL SAXPY( M,
492      +                                                   -CS*SN*AQOAP,
493      +                                                   A( 1, q ), 1,
494      +                                                   A( 1, p ), 1 )
495                                              D( p ) = D( p ) / CS
496                                              D( q ) = D( q )*CS
497                                              IF( RSVEC ) THEN
498                                                 CALL SAXPY( MVL,
499      +                                               T*APOAQ, V( 1, p ),
500      +                                               1, V( 1, q ), 1 )
501                                                 CALL SAXPY( MVL,
502      +                                               -CS*SN*AQOAP,
503      +                                               V( 1, q ), 1,
504      +                                               V( 1, p ), 1 )
505                                              END IF
506                                           END IF
507                                        END IF
508                                     END IF
509                                  END IF
510 *
511                               ELSE
512 *              .. have to use modified Gram-Schmidt like transformation
513                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
514                                  CALL SLASCL( 'G', 0, 0, AAPP, ONE, M,
515      +                                        1, WORK, LDA, IERR )
516                                  CALL SLASCL( 'G', 0, 0, AAQQ, ONE, M,
517      +                                        1, A( 1, q ), LDA, IERR )
518                                  TEMP1 = -AAPQ*D( p ) / D( q )
519                                  CALL SAXPY( M, TEMP1, WORK, 1,
520      +                                       A( 1, q ), 1 )
521                                  CALL SLASCL( 'G', 0, 0, ONE, AAQQ, M,
522      +                                        1, A( 1, q ), LDA, IERR )
523                                  SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
524      +                                      ONE-AAPQ*AAPQ ) )
525                                  MXSINJ = AMAX1( MXSINJ, SFMIN )
526                               END IF
527 *           END IF ROTOK THEN ... ELSE
528 *
529 *           In the case of cancellation in updating SVA(q), SVA(p)
530 *           recompute SVA(q), SVA(p).
531                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
532      +                            THEN
533                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
534      +                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
535                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
536      +                                         D( q )
537                                  ELSE
538                                     T = ZERO
539                                     AAQQ = ZERO
540                                     CALL SLASSQ( M, A( 1, q ), 1, T,
541      +                                           AAQQ )
542                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
543                                  END IF
544                               END IF
545                               IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
546                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
547      +                               ( AAPP.GT.ROOTSFMIN ) ) THEN
548                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
549      +                                     D( p )
550                                  ELSE
551                                     T = ZERO
552                                     AAPP = ZERO
553                                     CALL SLASSQ( M, A( 1, p ), 1, T,
554      +                                           AAPP )
555                                     AAPP = T*SQRT( AAPP )*D( p )
556                                  END IF
557                                  SVA( p ) = AAPP
558                               END IF
559 *
560                            ELSE
561 *        A(:,p) and A(:,q) already numerically orthogonal
562                               IF( ir1.EQ.0 )NOTROT = NOTROT + 1
563                               PSKIPPED = PSKIPPED + 1
564                            END IF
565                         ELSE
566 *        A(:,q) is zero column
567                            IF( ir1.EQ.0 )NOTROT = NOTROT + 1
568                            PSKIPPED = PSKIPPED + 1
569                         END IF
570 *
571                         IF( ( i.LE.SWBAND ) .AND.
572      +                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
573                            IF( ir1.EQ.0 )AAPP = -AAPP
574                            NOTROT = 0
575                            GO TO 2103
576                         END IF
577 *
578  2002                CONTINUE
579 *     END q-LOOP
580 *
581  2103                CONTINUE
582 *     bailed out of q-loop
583
584                      SVA( p ) = AAPP
585
586                   ELSE
587                      SVA( p ) = AAPP
588                      IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
589      +                   NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
590                   END IF
591 *
592  2001          CONTINUE
593 *     end of the p-loop
594 *     end of doing the block ( ibr, ibr )
595  1002       CONTINUE
596 *     end of ir1-loop
597 *
598 *........................................................
599 * ... go to the off diagonal blocks
600 *
601             igl = ( ibr-1 )*KBL + 1
602 *
603             DO 2010 jbc = ibr + 1, NBL
604 *
605                jgl = ( jbc-1 )*KBL + 1
606 *
607 *        doing the block at ( ibr, jbc )
608 *
609                IJBLSK = 0
610                DO 2100 p = igl, MIN0( igl+KBL-1, N )
611 *
612                   AAPP = SVA( p )
613 *
614                   IF( AAPP.GT.ZERO ) THEN
615 *
616                      PSKIPPED = 0
617 *
618                      DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
619 *
620                         AAQQ = SVA( q )
621 *
622                         IF( AAQQ.GT.ZERO ) THEN
623                            AAPP0 = AAPP
624 *
625 *     .. M x 2 Jacobi SVD ..
626 *
627 *        .. Safe Gram matrix computation ..
628 *
629                            IF( AAQQ.GE.ONE ) THEN
630                               IF( AAPP.GE.AAQQ ) THEN
631                                  ROTOK = ( SMALL*AAPP ).LE.AAQQ
632                               ELSE
633                                  ROTOK = ( SMALL*AAQQ ).LE.AAPP
634                               END IF
635                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
636                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
637      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
638      +                                  / AAPP
639                               ELSE
640                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
641                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
642      +                                        M, 1, WORK, LDA, IERR )
643                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
644      +                                  1 )*D( q ) / AAQQ
645                               END IF
646                            ELSE
647                               IF( AAPP.GE.AAQQ ) THEN
648                                  ROTOK = AAPP.LE.( AAQQ / SMALL )
649                               ELSE
650                                  ROTOK = AAQQ.LE.( AAPP / SMALL )
651                               END IF
652                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
653                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
654      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
655      +                                  / AAPP
656                               ELSE
657                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
658                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
659      +                                        M, 1, WORK, LDA, IERR )
660                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
661      +                                  1 )*D( p ) / AAPP
662                               END IF
663                            END IF
664 *
665                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
666 *
667 *        TO rotate or NOT to rotate, THAT is the question ...
668 *
669                            IF( ABS( AAPQ ).GT.TOL ) THEN
670                               NOTROT = 0
671 *           ROTATED  = ROTATED + 1
672                               PSKIPPED = 0
673                               ISWROT = ISWROT + 1
674 *
675                               IF( ROTOK ) THEN
676 *
677                                  AQOAP = AAQQ / AAPP
678                                  APOAQ = AAPP / AAQQ
679                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
680                                  IF( AAQQ.GT.AAPP0 )THETA = -THETA
681 *
682                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
683                                     T = HALF / THETA
684                                     FASTR( 3 ) = T*D( p ) / D( q )
685                                     FASTR( 4 ) = -T*D( q ) / D( p )
686                                     CALL SROTM( M, A( 1, p ), 1,
687      +                                          A( 1, q ), 1, FASTR )
688                                     IF( RSVEC )CALL SROTM( MVL,
689      +                                              V( 1, p ), 1,
690      +                                              V( 1, q ), 1,
691      +                                              FASTR )
692                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
693      +                                         ONE+T*APOAQ*AAPQ ) )
694                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
695      +                                     ONE-T*AQOAP*AAPQ ) )
696                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
697                                  ELSE
698 *
699 *                 .. choose correct signum for THETA and rotate
700 *
701                                     THSIGN = -SIGN( ONE, AAPQ )
702                                     IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
703                                     T = ONE / ( THETA+THSIGN*
704      +                                  SQRT( ONE+THETA*THETA ) )
705                                     CS = SQRT( ONE / ( ONE+T*T ) )
706                                     SN = T*CS
707                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
708                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
709      +                                         ONE+T*APOAQ*AAPQ ) )
710                                     AAPP = AAPP*SQRT( ONE-T*AQOAP*AAPQ )
711 *
712                                     APOAQ = D( p ) / D( q )
713                                     AQOAP = D( q ) / D( p )
714                                     IF( D( p ).GE.ONE ) THEN
715 *
716                                        IF( D( q ).GE.ONE ) THEN
717                                           FASTR( 3 ) = T*APOAQ
718                                           FASTR( 4 ) = -T*AQOAP
719                                           D( p ) = D( p )*CS
720                                           D( q ) = D( q )*CS
721                                           CALL SROTM( M, A( 1, p ), 1,
722      +                                                A( 1, q ), 1,
723      +                                                FASTR )
724                                           IF( RSVEC )CALL SROTM( MVL,
725      +                                        V( 1, p ), 1, V( 1, q ),
726      +                                        1, FASTR )
727                                        ELSE
728                                           CALL SAXPY( M, -T*AQOAP,
729      +                                                A( 1, q ), 1,
730      +                                                A( 1, p ), 1 )
731                                           CALL SAXPY( M, CS*SN*APOAQ,
732      +                                                A( 1, p ), 1,
733      +                                                A( 1, q ), 1 )
734                                           IF( RSVEC ) THEN
735                                              CALL SAXPY( MVL, -T*AQOAP,
736      +                                                   V( 1, q ), 1,
737      +                                                   V( 1, p ), 1 )
738                                              CALL SAXPY( MVL,
739      +                                                   CS*SN*APOAQ,
740      +                                                   V( 1, p ), 1,
741      +                                                   V( 1, q ), 1 )
742                                           END IF
743                                           D( p ) = D( p )*CS
744                                           D( q ) = D( q ) / CS
745                                        END IF
746                                     ELSE
747                                        IF( D( q ).GE.ONE ) THEN
748                                           CALL SAXPY( M, T*APOAQ,
749      +                                                A( 1, p ), 1,
750      +                                                A( 1, q ), 1 )
751                                           CALL SAXPY( M, -CS*SN*AQOAP,
752      +                                                A( 1, q ), 1,
753      +                                                A( 1, p ), 1 )
754                                           IF( RSVEC ) THEN
755                                              CALL SAXPY( MVL, T*APOAQ,
756      +                                                   V( 1, p ), 1,
757      +                                                   V( 1, q ), 1 )
758                                              CALL SAXPY( MVL,
759      +                                                   -CS*SN*AQOAP,
760      +                                                   V( 1, q ), 1,
761      +                                                   V( 1, p ), 1 )
762                                           END IF
763                                           D( p ) = D( p ) / CS
764                                           D( q ) = D( q )*CS
765                                        ELSE
766                                           IF( D( p ).GE.D( q ) ) THEN
767                                              CALL SAXPY( M, -T*AQOAP,
768      +                                                   A( 1, q ), 1,
769      +                                                   A( 1, p ), 1 )
770                                              CALL SAXPY( M, CS*SN*APOAQ,
771      +                                                   A( 1, p ), 1,
772      +                                                   A( 1, q ), 1 )
773                                              D( p ) = D( p )*CS
774                                              D( q ) = D( q ) / CS
775                                              IF( RSVEC ) THEN
776                                                 CALL SAXPY( MVL,
777      +                                               -T*AQOAP,
778      +                                               V( 1, q ), 1,
779      +                                               V( 1, p ), 1 )
780                                                 CALL SAXPY( MVL,
781      +                                               CS*SN*APOAQ,
782      +                                               V( 1, p ), 1,
783      +                                               V( 1, q ), 1 )
784                                              END IF
785                                           ELSE
786                                              CALL SAXPY( M, T*APOAQ,
787      +                                                   A( 1, p ), 1,
788      +                                                   A( 1, q ), 1 )
789                                              CALL SAXPY( M,
790      +                                                   -CS*SN*AQOAP,
791      +                                                   A( 1, q ), 1,
792      +                                                   A( 1, p ), 1 )
793                                              D( p ) = D( p ) / CS
794                                              D( q ) = D( q )*CS
795                                              IF( RSVEC ) THEN
796                                                 CALL SAXPY( MVL,
797      +                                               T*APOAQ, V( 1, p ),
798      +                                               1, V( 1, q ), 1 )
799                                                 CALL SAXPY( MVL,
800      +                                               -CS*SN*AQOAP,
801      +                                               V( 1, q ), 1,
802      +                                               V( 1, p ), 1 )
803                                              END IF
804                                           END IF
805                                        END IF
806                                     END IF
807                                  END IF
808 *
809                               ELSE
810                                  IF( AAPP.GT.AAQQ ) THEN
811                                     CALL SCOPY( M, A( 1, p ), 1, WORK,
812      +                                          1 )
813                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
814      +                                           M, 1, WORK, LDA, IERR )
815                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
816      +                                           M, 1, A( 1, q ), LDA,
817      +                                           IERR )
818                                     TEMP1 = -AAPQ*D( p ) / D( q )
819                                     CALL SAXPY( M, TEMP1, WORK, 1,
820      +                                          A( 1, q ), 1 )
821                                     CALL SLASCL( 'G', 0, 0, ONE, AAQQ,
822      +                                           M, 1, A( 1, q ), LDA,
823      +                                           IERR )
824                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
825      +                                         ONE-AAPQ*AAPQ ) )
826                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
827                                  ELSE
828                                     CALL SCOPY( M, A( 1, q ), 1, WORK,
829      +                                          1 )
830                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
831      +                                           M, 1, WORK, LDA, IERR )
832                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
833      +                                           M, 1, A( 1, p ), LDA,
834      +                                           IERR )
835                                     TEMP1 = -AAPQ*D( q ) / D( p )
836                                     CALL SAXPY( M, TEMP1, WORK, 1,
837      +                                          A( 1, p ), 1 )
838                                     CALL SLASCL( 'G', 0, 0, ONE, AAPP,
839      +                                           M, 1, A( 1, p ), LDA,
840      +                                           IERR )
841                                     SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
842      +                                         ONE-AAPQ*AAPQ ) )
843                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
844                                  END IF
845                               END IF
846 *           END IF ROTOK THEN ... ELSE
847 *
848 *           In the case of cancellation in updating SVA(q)
849 *           .. recompute SVA(q)
850                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
851      +                            THEN
852                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
853      +                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
854                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
855      +                                         D( q )
856                                  ELSE
857                                     T = ZERO
858                                     AAQQ = ZERO
859                                     CALL SLASSQ( M, A( 1, q ), 1, T,
860      +                                           AAQQ )
861                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
862                                  END IF
863                               END IF
864                               IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
865                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
866      +                               ( AAPP.GT.ROOTSFMIN ) ) THEN
867                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
868      +                                     D( p )
869                                  ELSE
870                                     T = ZERO
871                                     AAPP = ZERO
872                                     CALL SLASSQ( M, A( 1, p ), 1, T,
873      +                                           AAPP )
874                                     AAPP = T*SQRT( AAPP )*D( p )
875                                  END IF
876                                  SVA( p ) = AAPP
877                               END IF
878 *              end of OK rotation
879                            ELSE
880                               NOTROT = NOTROT + 1
881                               PSKIPPED = PSKIPPED + 1
882                               IJBLSK = IJBLSK + 1
883                            END IF
884                         ELSE
885                            NOTROT = NOTROT + 1
886                            PSKIPPED = PSKIPPED + 1
887                            IJBLSK = IJBLSK + 1
888                         END IF
889 *
890                         IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
891      +                      THEN
892                            SVA( p ) = AAPP
893                            NOTROT = 0
894                            GO TO 2011
895                         END IF
896                         IF( ( i.LE.SWBAND ) .AND.
897      +                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
898                            AAPP = -AAPP
899                            NOTROT = 0
900                            GO TO 2203
901                         END IF
902 *
903  2200                CONTINUE
904 *        end of the q-loop
905  2203                CONTINUE
906 *
907                      SVA( p ) = AAPP
908 *
909                   ELSE
910                      IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
911      +                   MIN0( jgl+KBL-1, N ) - jgl + 1
912                      IF( AAPP.LT.ZERO )NOTROT = 0
913                   END IF
914
915  2100          CONTINUE
916 *     end of the p-loop
917  2010       CONTINUE
918 *     end of the jbc-loop
919  2011       CONTINUE
920 *2011 bailed out of the jbc-loop
921             DO 2012 p = igl, MIN0( igl+KBL-1, N )
922                SVA( p ) = ABS( SVA( p ) )
923  2012       CONTINUE
924 *
925  2000    CONTINUE
926 *2000 :: end of the ibr-loop
927 *
928 *     .. update SVA(N)
929          IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
930      +       THEN
931             SVA( N ) = SNRM2( M, A( 1, N ), 1 )*D( N )
932          ELSE
933             T = ZERO
934             AAPP = ZERO
935             CALL SLASSQ( M, A( 1, N ), 1, T, AAPP )
936             SVA( N ) = T*SQRT( AAPP )*D( N )
937          END IF
938 *
939 *     Additional steering devices
940 *
941          IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
942      +       ( ISWROT.LE.N ) ) )SWBAND = i
943 *
944          IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.FLOAT( N )*TOL ) .AND.
945      +       ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
946             GO TO 1994
947          END IF
948 *
949          IF( NOTROT.GE.EMPTSW )GO TO 1994
950
951  1993 CONTINUE
952 *     end i=1:NSWEEP loop
953 * #:) Reaching this point means that the procedure has comleted the given
954 *     number of iterations.
955       INFO = NSWEEP - 1
956       GO TO 1995
957  1994 CONTINUE
958 * #:) Reaching this point means that during the i-th sweep all pivots were
959 *     below the given tolerance, causing early exit.
960 *
961       INFO = 0
962 * #:) INFO = 0 confirms successful iterations.
963  1995 CONTINUE
964 *
965 *     Sort the vector D.
966       DO 5991 p = 1, N - 1
967          q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
968          IF( p.NE.q ) THEN
969             TEMP1 = SVA( p )
970             SVA( p ) = SVA( q )
971             SVA( q ) = TEMP1
972             TEMP1 = D( p )
973             D( p ) = D( q )
974             D( q ) = TEMP1
975             CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
976             IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
977          END IF
978  5991 CONTINUE
979 *
980       RETURN
981 *     ..
982 *     .. END OF SGSVJ0
983 *     ..
984       END