Include Zlatko changes following Paul Roberts from NAG report
[platform/upstream/lapack.git] / SRC / sgsvj0.f
1       SUBROUTINE SGSVJ0( JOBV, M, N, A, LDA, D, SVA, MV, V, LDV, EPS,
2      +                   SFMIN, TOL, NSWEEP, WORK, LWORK, INFO )
3 *
4 *  -- LAPACK routine (version 3.3.1)                                  --
5 *
6 *  -- Contributed by Zlatko Drmac of the University of Zagreb and     --
7 *  -- Kresimir Veselic of the Fernuniversitaet Hagen                  --
8 *     January 2011
9 *
10 *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
11 *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
12 *
13 * This routine is also part of SIGMA (version 1.23, October 23. 2008.)
14 * SIGMA is a library of algorithms for highly accurate algorithms for
15 * computation of SVD, PSVD, QSVD, (H,K)-SVD, and for solution of the
16 * eigenvalue problems Hx = lambda M x, H M x = lambda x with H, M > 0.
17 *
18       IMPLICIT           NONE
19 *     ..
20 *     .. Scalar Arguments ..
21       INTEGER            INFO, LDA, LDV, LWORK, M, MV, N, NSWEEP
22       REAL               EPS, SFMIN, TOL
23       CHARACTER*1        JOBV
24 *     ..
25 *     .. Array Arguments ..
26       REAL               A( LDA, * ), SVA( N ), D( N ), V( LDV, * ),
27      +                   WORK( LWORK )
28 *     ..
29 *
30 *  Purpose
31 *  =======
32 *
33 *  SGSVJ0 is called from SGESVJ as a pre-processor and that is its main
34 *  purpose. It applies Jacobi rotations in the same way as SGESVJ does, but
35 *  it does not check convergence (stopping criterion). Few tuning
36 *  parameters (marked by [TP]) are available for the implementer.
37 *
38 *  Further Details
39 *  ~~~~~~~~~~~~~~~
40 *  SGSVJ0 is used just to enable SGESVJ to call a simplified version of
41 *  itself to work on a submatrix of the original matrix.
42 *
43 *  Contributors
44 *  ~~~~~~~~~~~~
45 *  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany)
46 *
47 *  Bugs, Examples and Comments
48 *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~
49 *  Please report all bugs and send interesting test examples and comments to
50 *  drmac@math.hr. Thank you.
51 *
52 *  Arguments
53 *  =========
54 *
55 *  JOBV    (input) CHARACTER*1
56 *          Specifies whether the output from this procedure is used
57 *          to compute the matrix V:
58 *          = 'V': the product of the Jacobi rotations is accumulated
59 *                 by postmulyiplying the N-by-N array V.
60 *                (See the description of V.)
61 *          = 'A': the product of the Jacobi rotations is accumulated
62 *                 by postmulyiplying the MV-by-N array V.
63 *                (See the descriptions of MV and V.)
64 *          = 'N': the Jacobi rotations are not accumulated.
65 *
66 *  M       (input) INTEGER
67 *          The number of rows of the input matrix A.  M >= 0.
68 *
69 *  N       (input) INTEGER
70 *          The number of columns of the input matrix A.
71 *          M >= N >= 0.
72 *
73 *  A       (input/output) REAL array, dimension (LDA,N)
74 *          On entry, M-by-N matrix A, such that A*diag(D) represents
75 *          the input matrix.
76 *          On exit,
77 *          A_onexit * D_onexit represents the input matrix A*diag(D)
78 *          post-multiplied by a sequence of Jacobi rotations, where the
79 *          rotation threshold and the total number of sweeps are given in
80 *          TOL and NSWEEP, respectively.
81 *          (See the descriptions of D, TOL and NSWEEP.)
82 *
83 *  LDA     (input) INTEGER
84 *          The leading dimension of the array A.  LDA >= max(1,M).
85 *
86 *  D       (input/workspace/output) REAL array, dimension (N)
87 *          The array D accumulates the scaling factors from the fast scaled
88 *          Jacobi rotations.
89 *          On entry, A*diag(D) represents the input matrix.
90 *          On exit, A_onexit*diag(D_onexit) represents the input matrix
91 *          post-multiplied by a sequence of Jacobi rotations, where the
92 *          rotation threshold and the total number of sweeps are given in
93 *          TOL and NSWEEP, respectively.
94 *          (See the descriptions of A, TOL and NSWEEP.)
95 *
96 *  SVA     (input/workspace/output) REAL array, dimension (N)
97 *          On entry, SVA contains the Euclidean norms of the columns of
98 *          the matrix A*diag(D).
99 *          On exit, SVA contains the Euclidean norms of the columns of
100 *          the matrix onexit*diag(D_onexit).
101 *
102 *  MV      (input) INTEGER
103 *          If JOBV .EQ. 'A', then MV rows of V are post-multipled by a
104 *                           sequence of Jacobi rotations.
105 *          If JOBV = 'N',   then MV is not referenced.
106 *
107 *  V       (input/output) REAL array, dimension (LDV,N)
108 *          If JOBV .EQ. 'V' then N rows of V are post-multipled by a
109 *                           sequence of Jacobi rotations.
110 *          If JOBV .EQ. 'A' then MV rows of V are post-multipled by a
111 *                           sequence of Jacobi rotations.
112 *          If JOBV = 'N',   then V is not referenced.
113 *
114 *  LDV     (input) INTEGER
115 *          The leading dimension of the array V,  LDV >= 1.
116 *          If JOBV = 'V', LDV .GE. N.
117 *          If JOBV = 'A', LDV .GE. MV.
118 *
119 *  EPS     (input) INTEGER
120 *          EPS = SLAMCH('Epsilon')
121 *
122 *  SFMIN   (input) INTEGER
123 *          SFMIN = SLAMCH('Safe Minimum')
124 *
125 *  TOL     (input) REAL
126 *          TOL is the threshold for Jacobi rotations. For a pair
127 *          A(:,p), A(:,q) of pivot columns, the Jacobi rotation is
128 *          applied only if ABS(COS(angle(A(:,p),A(:,q)))) .GT. TOL.
129 *
130 *  NSWEEP  (input) INTEGER
131 *          NSWEEP is the number of sweeps of Jacobi rotations to be
132 *          performed.
133 *
134 *  WORK    (workspace) REAL array, dimension LWORK.
135 *
136 *  LWORK   (input) INTEGER
137 *          LWORK is the dimension of WORK. LWORK .GE. M.
138 *
139 *  INFO    (output) INTEGER
140 *          = 0 : successful exit.
141 *          < 0 : if INFO = -i, then the i-th argument had an illegal value
142 *
143 *  =====================================================================
144 *
145 *     .. Local Parameters ..
146       REAL               ZERO, HALF, ONE, TWO
147       PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
148      +                   TWO = 2.0E0 )
149 *     ..
150 *     .. Local Scalars ..
151       REAL               AAPP, AAPP0, AAPQ, AAQQ, APOAQ, AQOAP, BIG,
152      +                   BIGTHETA, CS, MXAAPQ, MXSINJ, ROOTBIG, ROOTEPS,
153      +                   ROOTSFMIN, ROOTTOL, SMALL, SN, T, TEMP1, THETA,
154      +                   THSIGN
155       INTEGER            BLSKIP, EMPTSW, i, ibr, IERR, igl, IJBLSK, ir1,
156      +                   ISWROT, jbc, jgl, KBL, LKAHEAD, MVL, NBL,
157      +                   NOTROT, p, PSKIPPED, q, ROWSKIP, SWBAND
158       LOGICAL            APPLV, ROTOK, RSVEC
159 *     ..
160 *     .. Local Arrays ..
161       REAL               FASTR( 5 )
162 *     ..
163 *     .. Intrinsic Functions ..
164       INTRINSIC          ABS, AMAX1, AMIN1, FLOAT, MIN0, SIGN, SQRT
165 *     ..
166 *     .. External Functions ..
167       REAL               SDOT, SNRM2
168       INTEGER            ISAMAX
169       LOGICAL            LSAME
170       EXTERNAL           ISAMAX, LSAME, SDOT, SNRM2
171 *     ..
172 *     .. External Subroutines ..
173       EXTERNAL           SAXPY, SCOPY, SLASCL, SLASSQ, SROTM, SSWAP
174 *     ..
175 *     .. Executable Statements ..
176 *
177 *     Test the input parameters.
178 *
179       APPLV = LSAME( JOBV, 'A' )
180       RSVEC = LSAME( JOBV, 'V' )
181       IF( .NOT.( RSVEC .OR. APPLV .OR. LSAME( JOBV, 'N' ) ) ) THEN
182          INFO = -1
183       ELSE IF( M.LT.0 ) THEN
184          INFO = -2
185       ELSE IF( ( N.LT.0 ) .OR. ( N.GT.M ) ) THEN
186          INFO = -3
187       ELSE IF( LDA.LT.M ) THEN
188          INFO = -5
189       ELSE IF( ( RSVEC.OR.APPLV ) .AND. ( MV.LT.0 ) ) THEN
190          INFO = -8
191       ELSE IF( ( RSVEC.AND.( LDV.LT.N ) ).OR. 
192      &         ( APPLV.AND.( LDV.LT.MV ) ) ) THEN
193          INFO = -10
194       ELSE IF( TOL.LE.EPS ) THEN
195          INFO = -13
196       ELSE IF( NSWEEP.LT.0 ) THEN
197          INFO = -14
198       ELSE IF( LWORK.LT.M ) THEN
199          INFO = -16
200       ELSE
201          INFO = 0
202       END IF
203 *
204 *     #:(
205       IF( INFO.NE.0 ) THEN
206          CALL XERBLA( 'SGSVJ0', -INFO )
207          RETURN
208       END IF
209 *
210       IF( RSVEC ) THEN
211          MVL = N
212       ELSE IF( APPLV ) THEN
213          MVL = MV
214       END IF
215       RSVEC = RSVEC .OR. APPLV
216
217       ROOTEPS = SQRT( EPS )
218       ROOTSFMIN = SQRT( SFMIN )
219       SMALL = SFMIN / EPS
220       BIG = ONE / SFMIN
221       ROOTBIG = ONE / ROOTSFMIN
222       BIGTHETA = ONE / ROOTEPS
223       ROOTTOL = SQRT( TOL )
224 *
225 *     .. Row-cyclic Jacobi SVD algorithm with column pivoting ..
226 *
227       EMPTSW = ( N*( N-1 ) ) / 2
228       NOTROT = 0
229       FASTR( 1 ) = ZERO
230 *
231 *     .. Row-cyclic pivot strategy with de Rijk's pivoting ..
232 *
233
234       SWBAND = 0
235 *[TP] SWBAND is a tuning parameter. It is meaningful and effective
236 *     if SGESVJ is used as a computational routine in the preconditioned
237 *     Jacobi SVD algorithm SGESVJ. For sweeps i=1:SWBAND the procedure
238 *     ......
239
240       KBL = MIN0( 8, N )
241 *[TP] KBL is a tuning parameter that defines the tile size in the
242 *     tiling of the p-q loops of pivot pairs. In general, an optimal
243 *     value of KBL depends on the matrix dimensions and on the
244 *     parameters of the computer's memory.
245 *
246       NBL = N / KBL
247       IF( ( NBL*KBL ).NE.N )NBL = NBL + 1
248
249       BLSKIP = ( KBL**2 ) + 1
250 *[TP] BLKSKIP is a tuning parameter that depends on SWBAND and KBL.
251
252       ROWSKIP = MIN0( 5, KBL )
253 *[TP] ROWSKIP is a tuning parameter.
254
255       LKAHEAD = 1
256 *[TP] LKAHEAD is a tuning parameter.
257       SWBAND = 0
258       PSKIPPED = 0
259 *
260       DO 1993 i = 1, NSWEEP
261 *     .. go go go ...
262 *
263          MXAAPQ = ZERO
264          MXSINJ = ZERO
265          ISWROT = 0
266 *
267          NOTROT = 0
268          PSKIPPED = 0
269 *
270          DO 2000 ibr = 1, NBL
271
272             igl = ( ibr-1 )*KBL + 1
273 *
274             DO 1002 ir1 = 0, MIN0( LKAHEAD, NBL-ibr )
275 *
276                igl = igl + ir1*KBL
277 *
278                DO 2001 p = igl, MIN0( igl+KBL-1, N-1 )
279
280 *     .. de Rijk's pivoting
281                   q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
282                   IF( p.NE.q ) THEN
283                      CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
284                      IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1,
285      +                                      V( 1, q ), 1 )
286                      TEMP1 = SVA( p )
287                      SVA( p ) = SVA( q )
288                      SVA( q ) = TEMP1
289                      TEMP1 = D( p )
290                      D( p ) = D( q )
291                      D( q ) = TEMP1
292                   END IF
293 *
294                   IF( ir1.EQ.0 ) THEN
295 *
296 *        Column norms are periodically updated by explicit
297 *        norm computation.
298 *        Caveat:
299 *        Some BLAS implementations compute SNRM2(M,A(1,p),1)
300 *        as SQRT(SDOT(M,A(1,p),1,A(1,p),1)), which may result in
301 *        overflow for ||A(:,p)||_2 > SQRT(overflow_threshold), and
302 *        undeflow for ||A(:,p)||_2 < SQRT(underflow_threshold).
303 *        Hence, SNRM2 cannot be trusted, not even in the case when
304 *        the true norm is far from the under(over)flow boundaries.
305 *        If properly implemented SNRM2 is available, the IF-THEN-ELSE
306 *        below should read "AAPP = SNRM2( M, A(1,p), 1 ) * D(p)".
307 *
308                      IF( ( SVA( p ).LT.ROOTBIG ) .AND.
309      +                   ( SVA( p ).GT.ROOTSFMIN ) ) THEN
310                         SVA( p ) = SNRM2( M, A( 1, p ), 1 )*D( p )
311                      ELSE
312                         TEMP1 = ZERO
313                         AAPP = ONE
314                         CALL SLASSQ( M, A( 1, p ), 1, TEMP1, AAPP )
315                         SVA( p ) = TEMP1*SQRT( AAPP )*D( p )
316                      END IF
317                      AAPP = SVA( p )
318                   ELSE
319                      AAPP = SVA( p )
320                   END IF
321
322 *
323                   IF( AAPP.GT.ZERO ) THEN
324 *
325                      PSKIPPED = 0
326 *
327                      DO 2002 q = p + 1, MIN0( igl+KBL-1, N )
328 *
329                         AAQQ = SVA( q )
330
331                         IF( AAQQ.GT.ZERO ) THEN
332 *
333                            AAPP0 = AAPP
334                            IF( AAQQ.GE.ONE ) THEN
335                               ROTOK = ( SMALL*AAPP ).LE.AAQQ
336                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
337                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
338      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
339      +                                  / AAPP
340                               ELSE
341                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
342                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
343      +                                        M, 1, WORK, LDA, IERR )
344                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
345      +                                  1 )*D( q ) / AAQQ
346                               END IF
347                            ELSE
348                               ROTOK = AAPP.LE.( AAQQ / SMALL )
349                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
350                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
351      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
352      +                                  / AAPP
353                               ELSE
354                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
355                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
356      +                                        M, 1, WORK, LDA, IERR )
357                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
358      +                                  1 )*D( p ) / AAPP
359                               END IF
360                            END IF
361 *
362                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
363 *
364 *        TO rotate or NOT to rotate, THAT is the question ...
365 *
366                            IF( ABS( AAPQ ).GT.TOL ) THEN
367 *
368 *           .. rotate
369 *           ROTATED = ROTATED + ONE
370 *
371                               IF( ir1.EQ.0 ) THEN
372                                  NOTROT = 0
373                                  PSKIPPED = 0
374                                  ISWROT = ISWROT + 1
375                               END IF
376 *
377                               IF( ROTOK ) THEN
378 *
379                                  AQOAP = AAQQ / AAPP
380                                  APOAQ = AAPP / AAQQ
381                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
382 *
383                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
384 *
385                                     T = HALF / THETA
386                                     FASTR( 3 ) = T*D( p ) / D( q )
387                                     FASTR( 4 ) = -T*D( q ) / D( p )
388                                     CALL SROTM( M, A( 1, p ), 1,
389      +                                          A( 1, q ), 1, FASTR )
390                                     IF( RSVEC )CALL SROTM( MVL,
391      +                                              V( 1, p ), 1,
392      +                                              V( 1, q ), 1,
393      +                                              FASTR )
394                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
395      +                                         ONE+T*APOAQ*AAPQ ) )
396                                     AAPP = AAPP*SQRT( AMAX1( ZERO, 
397      +                                         ONE-T*AQOAP*AAPQ ) )
398                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
399 *
400                                  ELSE
401 *
402 *                 .. choose correct signum for THETA and rotate
403 *
404                                     THSIGN = -SIGN( ONE, AAPQ )
405                                     T = ONE / ( THETA+THSIGN*
406      +                                  SQRT( ONE+THETA*THETA ) )
407                                     CS = SQRT( ONE / ( ONE+T*T ) )
408                                     SN = T*CS
409 *
410                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
411                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
412      +                                         ONE+T*APOAQ*AAPQ ) )
413                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
414      +                                     ONE-T*AQOAP*AAPQ ) )
415 *
416                                     APOAQ = D( p ) / D( q )
417                                     AQOAP = D( q ) / D( p )
418                                     IF( D( p ).GE.ONE ) THEN
419                                        IF( D( q ).GE.ONE ) THEN
420                                           FASTR( 3 ) = T*APOAQ
421                                           FASTR( 4 ) = -T*AQOAP
422                                           D( p ) = D( p )*CS
423                                           D( q ) = D( q )*CS
424                                           CALL SROTM( M, A( 1, p ), 1,
425      +                                                A( 1, q ), 1,
426      +                                                FASTR )
427                                           IF( RSVEC )CALL SROTM( MVL,
428      +                                        V( 1, p ), 1, V( 1, q ),
429      +                                        1, FASTR )
430                                        ELSE
431                                           CALL SAXPY( M, -T*AQOAP,
432      +                                                A( 1, q ), 1,
433      +                                                A( 1, p ), 1 )
434                                           CALL SAXPY( M, CS*SN*APOAQ,
435      +                                                A( 1, p ), 1,
436      +                                                A( 1, q ), 1 )
437                                           D( p ) = D( p )*CS
438                                           D( q ) = D( q ) / CS
439                                           IF( RSVEC ) THEN
440                                              CALL SAXPY( MVL, -T*AQOAP,
441      +                                                   V( 1, q ), 1,
442      +                                                   V( 1, p ), 1 )
443                                              CALL SAXPY( MVL,
444      +                                                   CS*SN*APOAQ,
445      +                                                   V( 1, p ), 1,
446      +                                                   V( 1, q ), 1 )
447                                           END IF
448                                        END IF
449                                     ELSE
450                                        IF( D( q ).GE.ONE ) THEN
451                                           CALL SAXPY( M, T*APOAQ,
452      +                                                A( 1, p ), 1,
453      +                                                A( 1, q ), 1 )
454                                           CALL SAXPY( M, -CS*SN*AQOAP,
455      +                                                A( 1, q ), 1,
456      +                                                A( 1, p ), 1 )
457                                           D( p ) = D( p ) / CS
458                                           D( q ) = D( q )*CS
459                                           IF( RSVEC ) THEN
460                                              CALL SAXPY( MVL, T*APOAQ,
461      +                                                   V( 1, p ), 1,
462      +                                                   V( 1, q ), 1 )
463                                              CALL SAXPY( MVL,
464      +                                                   -CS*SN*AQOAP,
465      +                                                   V( 1, q ), 1,
466      +                                                   V( 1, p ), 1 )
467                                           END IF
468                                        ELSE
469                                           IF( D( p ).GE.D( q ) ) THEN
470                                              CALL SAXPY( M, -T*AQOAP,
471      +                                                   A( 1, q ), 1,
472      +                                                   A( 1, p ), 1 )
473                                              CALL SAXPY( M, CS*SN*APOAQ,
474      +                                                   A( 1, p ), 1,
475      +                                                   A( 1, q ), 1 )
476                                              D( p ) = D( p )*CS
477                                              D( q ) = D( q ) / CS
478                                              IF( RSVEC ) THEN
479                                                 CALL SAXPY( MVL,
480      +                                               -T*AQOAP,
481      +                                               V( 1, q ), 1,
482      +                                               V( 1, p ), 1 )
483                                                 CALL SAXPY( MVL,
484      +                                               CS*SN*APOAQ,
485      +                                               V( 1, p ), 1,
486      +                                               V( 1, q ), 1 )
487                                              END IF
488                                           ELSE
489                                              CALL SAXPY( M, T*APOAQ,
490      +                                                   A( 1, p ), 1,
491      +                                                   A( 1, q ), 1 )
492                                              CALL SAXPY( M,
493      +                                                   -CS*SN*AQOAP,
494      +                                                   A( 1, q ), 1,
495      +                                                   A( 1, p ), 1 )
496                                              D( p ) = D( p ) / CS
497                                              D( q ) = D( q )*CS
498                                              IF( RSVEC ) THEN
499                                                 CALL SAXPY( MVL,
500      +                                               T*APOAQ, V( 1, p ),
501      +                                               1, V( 1, q ), 1 )
502                                                 CALL SAXPY( MVL,
503      +                                               -CS*SN*AQOAP,
504      +                                               V( 1, q ), 1,
505      +                                               V( 1, p ), 1 )
506                                              END IF
507                                           END IF
508                                        END IF
509                                     END IF
510                                  END IF
511 *
512                               ELSE
513 *              .. have to use modified Gram-Schmidt like transformation
514                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
515                                  CALL SLASCL( 'G', 0, 0, AAPP, ONE, M,
516      +                                        1, WORK, LDA, IERR )
517                                  CALL SLASCL( 'G', 0, 0, AAQQ, ONE, M,
518      +                                        1, A( 1, q ), LDA, IERR )
519                                  TEMP1 = -AAPQ*D( p ) / D( q )
520                                  CALL SAXPY( M, TEMP1, WORK, 1,
521      +                                       A( 1, q ), 1 )
522                                  CALL SLASCL( 'G', 0, 0, ONE, AAQQ, M,
523      +                                        1, A( 1, q ), LDA, IERR )
524                                  SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
525      +                                      ONE-AAPQ*AAPQ ) )
526                                  MXSINJ = AMAX1( MXSINJ, SFMIN )
527                               END IF
528 *           END IF ROTOK THEN ... ELSE
529 *
530 *           In the case of cancellation in updating SVA(q), SVA(p)
531 *           recompute SVA(q), SVA(p).
532                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
533      +                            THEN
534                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
535      +                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
536                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
537      +                                         D( q )
538                                  ELSE
539                                     T = ZERO
540                                     AAQQ = ONE
541                                     CALL SLASSQ( M, A( 1, q ), 1, T,
542      +                                           AAQQ )
543                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
544                                  END IF
545                               END IF
546                               IF( ( AAPP / AAPP0 ).LE.ROOTEPS ) THEN
547                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
548      +                               ( AAPP.GT.ROOTSFMIN ) ) THEN
549                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
550      +                                     D( p )
551                                  ELSE
552                                     T = ZERO
553                                     AAPP = ONE
554                                     CALL SLASSQ( M, A( 1, p ), 1, T,
555      +                                           AAPP )
556                                     AAPP = T*SQRT( AAPP )*D( p )
557                                  END IF
558                                  SVA( p ) = AAPP
559                               END IF
560 *
561                            ELSE
562 *        A(:,p) and A(:,q) already numerically orthogonal
563                               IF( ir1.EQ.0 )NOTROT = NOTROT + 1
564                               PSKIPPED = PSKIPPED + 1
565                            END IF
566                         ELSE
567 *        A(:,q) is zero column
568                            IF( ir1.EQ.0 )NOTROT = NOTROT + 1
569                            PSKIPPED = PSKIPPED + 1
570                         END IF
571 *
572                         IF( ( i.LE.SWBAND ) .AND.
573      +                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
574                            IF( ir1.EQ.0 )AAPP = -AAPP
575                            NOTROT = 0
576                            GO TO 2103
577                         END IF
578 *
579  2002                CONTINUE
580 *     END q-LOOP
581 *
582  2103                CONTINUE
583 *     bailed out of q-loop
584
585                      SVA( p ) = AAPP
586
587                   ELSE
588                      SVA( p ) = AAPP
589                      IF( ( ir1.EQ.0 ) .AND. ( AAPP.EQ.ZERO ) )
590      +                   NOTROT = NOTROT + MIN0( igl+KBL-1, N ) - p
591                   END IF
592 *
593  2001          CONTINUE
594 *     end of the p-loop
595 *     end of doing the block ( ibr, ibr )
596  1002       CONTINUE
597 *     end of ir1-loop
598 *
599 *........................................................
600 * ... go to the off diagonal blocks
601 *
602             igl = ( ibr-1 )*KBL + 1
603 *
604             DO 2010 jbc = ibr + 1, NBL
605 *
606                jgl = ( jbc-1 )*KBL + 1
607 *
608 *        doing the block at ( ibr, jbc )
609 *
610                IJBLSK = 0
611                DO 2100 p = igl, MIN0( igl+KBL-1, N )
612 *
613                   AAPP = SVA( p )
614 *
615                   IF( AAPP.GT.ZERO ) THEN
616 *
617                      PSKIPPED = 0
618 *
619                      DO 2200 q = jgl, MIN0( jgl+KBL-1, N )
620 *
621                         AAQQ = SVA( q )
622 *
623                         IF( AAQQ.GT.ZERO ) THEN
624                            AAPP0 = AAPP
625 *
626 *     .. M x 2 Jacobi SVD ..
627 *
628 *        .. Safe Gram matrix computation ..
629 *
630                            IF( AAQQ.GE.ONE ) THEN
631                               IF( AAPP.GE.AAQQ ) THEN
632                                  ROTOK = ( SMALL*AAPP ).LE.AAQQ
633                               ELSE
634                                  ROTOK = ( SMALL*AAQQ ).LE.AAPP
635                               END IF
636                               IF( AAPP.LT.( BIG / AAQQ ) ) THEN
637                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
638      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
639      +                                  / AAPP
640                               ELSE
641                                  CALL SCOPY( M, A( 1, p ), 1, WORK, 1 )
642                                  CALL SLASCL( 'G', 0, 0, AAPP, D( p ),
643      +                                        M, 1, WORK, LDA, IERR )
644                                  AAPQ = SDOT( M, WORK, 1, A( 1, q ),
645      +                                  1 )*D( q ) / AAQQ
646                               END IF
647                            ELSE
648                               IF( AAPP.GE.AAQQ ) THEN
649                                  ROTOK = AAPP.LE.( AAQQ / SMALL )
650                               ELSE
651                                  ROTOK = AAQQ.LE.( AAPP / SMALL )
652                               END IF
653                               IF( AAPP.GT.( SMALL / AAQQ ) ) THEN
654                                  AAPQ = ( SDOT( M, A( 1, p ), 1, A( 1,
655      +                                  q ), 1 )*D( p )*D( q ) / AAQQ )
656      +                                  / AAPP
657                               ELSE
658                                  CALL SCOPY( M, A( 1, q ), 1, WORK, 1 )
659                                  CALL SLASCL( 'G', 0, 0, AAQQ, D( q ),
660      +                                        M, 1, WORK, LDA, IERR )
661                                  AAPQ = SDOT( M, WORK, 1, A( 1, p ),
662      +                                  1 )*D( p ) / AAPP
663                               END IF
664                            END IF
665 *
666                            MXAAPQ = AMAX1( MXAAPQ, ABS( AAPQ ) )
667 *
668 *        TO rotate or NOT to rotate, THAT is the question ...
669 *
670                            IF( ABS( AAPQ ).GT.TOL ) THEN
671                               NOTROT = 0
672 *           ROTATED  = ROTATED + 1
673                               PSKIPPED = 0
674                               ISWROT = ISWROT + 1
675 *
676                               IF( ROTOK ) THEN
677 *
678                                  AQOAP = AAQQ / AAPP
679                                  APOAQ = AAPP / AAQQ
680                                  THETA = -HALF*ABS( AQOAP-APOAQ ) / AAPQ
681                                  IF( AAQQ.GT.AAPP0 )THETA = -THETA
682 *
683                                  IF( ABS( THETA ).GT.BIGTHETA ) THEN
684                                     T = HALF / THETA
685                                     FASTR( 3 ) = T*D( p ) / D( q )
686                                     FASTR( 4 ) = -T*D( q ) / D( p )
687                                     CALL SROTM( M, A( 1, p ), 1,
688      +                                          A( 1, q ), 1, FASTR )
689                                     IF( RSVEC )CALL SROTM( MVL,
690      +                                              V( 1, p ), 1,
691      +                                              V( 1, q ), 1,
692      +                                              FASTR )
693                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
694      +                                         ONE+T*APOAQ*AAPQ ) )
695                                     AAPP = AAPP*SQRT( AMAX1( ZERO,
696      +                                     ONE-T*AQOAP*AAPQ ) )
697                                     MXSINJ = AMAX1( MXSINJ, ABS( T ) )
698                                  ELSE
699 *
700 *                 .. choose correct signum for THETA and rotate
701 *
702                                     THSIGN = -SIGN( ONE, AAPQ )
703                                     IF( AAQQ.GT.AAPP0 )THSIGN = -THSIGN
704                                     T = ONE / ( THETA+THSIGN*
705      +                                  SQRT( ONE+THETA*THETA ) )
706                                     CS = SQRT( ONE / ( ONE+T*T ) )
707                                     SN = T*CS
708                                     MXSINJ = AMAX1( MXSINJ, ABS( SN ) )
709                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
710      +                                         ONE+T*APOAQ*AAPQ ) )
711                                     AAPP = AAPP*SQRT( AMAX1( ZERO, 
712      +                                         ONE-T*AQOAP*AAPQ ) )
713 *
714                                     APOAQ = D( p ) / D( q )
715                                     AQOAP = D( q ) / D( p )
716                                     IF( D( p ).GE.ONE ) THEN
717 *
718                                        IF( D( q ).GE.ONE ) THEN
719                                           FASTR( 3 ) = T*APOAQ
720                                           FASTR( 4 ) = -T*AQOAP
721                                           D( p ) = D( p )*CS
722                                           D( q ) = D( q )*CS
723                                           CALL SROTM( M, A( 1, p ), 1,
724      +                                                A( 1, q ), 1,
725      +                                                FASTR )
726                                           IF( RSVEC )CALL SROTM( MVL,
727      +                                        V( 1, p ), 1, V( 1, q ),
728      +                                        1, FASTR )
729                                        ELSE
730                                           CALL SAXPY( M, -T*AQOAP,
731      +                                                A( 1, q ), 1,
732      +                                                A( 1, p ), 1 )
733                                           CALL SAXPY( M, CS*SN*APOAQ,
734      +                                                A( 1, p ), 1,
735      +                                                A( 1, q ), 1 )
736                                           IF( RSVEC ) THEN
737                                              CALL SAXPY( MVL, -T*AQOAP,
738      +                                                   V( 1, q ), 1,
739      +                                                   V( 1, p ), 1 )
740                                              CALL SAXPY( MVL,
741      +                                                   CS*SN*APOAQ,
742      +                                                   V( 1, p ), 1,
743      +                                                   V( 1, q ), 1 )
744                                           END IF
745                                           D( p ) = D( p )*CS
746                                           D( q ) = D( q ) / CS
747                                        END IF
748                                     ELSE
749                                        IF( D( q ).GE.ONE ) THEN
750                                           CALL SAXPY( M, T*APOAQ,
751      +                                                A( 1, p ), 1,
752      +                                                A( 1, q ), 1 )
753                                           CALL SAXPY( M, -CS*SN*AQOAP,
754      +                                                A( 1, q ), 1,
755      +                                                A( 1, p ), 1 )
756                                           IF( RSVEC ) THEN
757                                              CALL SAXPY( MVL, T*APOAQ,
758      +                                                   V( 1, p ), 1,
759      +                                                   V( 1, q ), 1 )
760                                              CALL SAXPY( MVL,
761      +                                                   -CS*SN*AQOAP,
762      +                                                   V( 1, q ), 1,
763      +                                                   V( 1, p ), 1 )
764                                           END IF
765                                           D( p ) = D( p ) / CS
766                                           D( q ) = D( q )*CS
767                                        ELSE
768                                           IF( D( p ).GE.D( q ) ) THEN
769                                              CALL SAXPY( M, -T*AQOAP,
770      +                                                   A( 1, q ), 1,
771      +                                                   A( 1, p ), 1 )
772                                              CALL SAXPY( M, CS*SN*APOAQ,
773      +                                                   A( 1, p ), 1,
774      +                                                   A( 1, q ), 1 )
775                                              D( p ) = D( p )*CS
776                                              D( q ) = D( q ) / CS
777                                              IF( RSVEC ) THEN
778                                                 CALL SAXPY( MVL,
779      +                                               -T*AQOAP,
780      +                                               V( 1, q ), 1,
781      +                                               V( 1, p ), 1 )
782                                                 CALL SAXPY( MVL,
783      +                                               CS*SN*APOAQ,
784      +                                               V( 1, p ), 1,
785      +                                               V( 1, q ), 1 )
786                                              END IF
787                                           ELSE
788                                              CALL SAXPY( M, T*APOAQ,
789      +                                                   A( 1, p ), 1,
790      +                                                   A( 1, q ), 1 )
791                                              CALL SAXPY( M,
792      +                                                   -CS*SN*AQOAP,
793      +                                                   A( 1, q ), 1,
794      +                                                   A( 1, p ), 1 )
795                                              D( p ) = D( p ) / CS
796                                              D( q ) = D( q )*CS
797                                              IF( RSVEC ) THEN
798                                                 CALL SAXPY( MVL,
799      +                                               T*APOAQ, V( 1, p ),
800      +                                               1, V( 1, q ), 1 )
801                                                 CALL SAXPY( MVL,
802      +                                               -CS*SN*AQOAP,
803      +                                               V( 1, q ), 1,
804      +                                               V( 1, p ), 1 )
805                                              END IF
806                                           END IF
807                                        END IF
808                                     END IF
809                                  END IF
810 *
811                               ELSE
812                                  IF( AAPP.GT.AAQQ ) THEN
813                                     CALL SCOPY( M, A( 1, p ), 1, WORK,
814      +                                          1 )
815                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
816      +                                           M, 1, WORK, LDA, IERR )
817                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
818      +                                           M, 1, A( 1, q ), LDA,
819      +                                           IERR )
820                                     TEMP1 = -AAPQ*D( p ) / D( q )
821                                     CALL SAXPY( M, TEMP1, WORK, 1,
822      +                                          A( 1, q ), 1 )
823                                     CALL SLASCL( 'G', 0, 0, ONE, AAQQ,
824      +                                           M, 1, A( 1, q ), LDA,
825      +                                           IERR )
826                                     SVA( q ) = AAQQ*SQRT( AMAX1( ZERO,
827      +                                         ONE-AAPQ*AAPQ ) )
828                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
829                                  ELSE
830                                     CALL SCOPY( M, A( 1, q ), 1, WORK,
831      +                                          1 )
832                                     CALL SLASCL( 'G', 0, 0, AAQQ, ONE,
833      +                                           M, 1, WORK, LDA, IERR )
834                                     CALL SLASCL( 'G', 0, 0, AAPP, ONE,
835      +                                           M, 1, A( 1, p ), LDA,
836      +                                           IERR )
837                                     TEMP1 = -AAPQ*D( q ) / D( p )
838                                     CALL SAXPY( M, TEMP1, WORK, 1,
839      +                                          A( 1, p ), 1 )
840                                     CALL SLASCL( 'G', 0, 0, ONE, AAPP,
841      +                                           M, 1, A( 1, p ), LDA,
842      +                                           IERR )
843                                     SVA( p ) = AAPP*SQRT( AMAX1( ZERO,
844      +                                         ONE-AAPQ*AAPQ ) )
845                                     MXSINJ = AMAX1( MXSINJ, SFMIN )
846                                  END IF
847                               END IF
848 *           END IF ROTOK THEN ... ELSE
849 *
850 *           In the case of cancellation in updating SVA(q)
851 *           .. recompute SVA(q)
852                               IF( ( SVA( q ) / AAQQ )**2.LE.ROOTEPS )
853      +                            THEN
854                                  IF( ( AAQQ.LT.ROOTBIG ) .AND.
855      +                               ( AAQQ.GT.ROOTSFMIN ) ) THEN
856                                     SVA( q ) = SNRM2( M, A( 1, q ), 1 )*
857      +                                         D( q )
858                                  ELSE
859                                     T = ZERO
860                                     AAQQ = ONE
861                                     CALL SLASSQ( M, A( 1, q ), 1, T,
862      +                                           AAQQ )
863                                     SVA( q ) = T*SQRT( AAQQ )*D( q )
864                                  END IF
865                               END IF
866                               IF( ( AAPP / AAPP0 )**2.LE.ROOTEPS ) THEN
867                                  IF( ( AAPP.LT.ROOTBIG ) .AND.
868      +                               ( AAPP.GT.ROOTSFMIN ) ) THEN
869                                     AAPP = SNRM2( M, A( 1, p ), 1 )*
870      +                                     D( p )
871                                  ELSE
872                                     T = ZERO
873                                     AAPP = ONE
874                                     CALL SLASSQ( M, A( 1, p ), 1, T,
875      +                                           AAPP )
876                                     AAPP = T*SQRT( AAPP )*D( p )
877                                  END IF
878                                  SVA( p ) = AAPP
879                               END IF
880 *              end of OK rotation
881                            ELSE
882                               NOTROT = NOTROT + 1
883                               PSKIPPED = PSKIPPED + 1
884                               IJBLSK = IJBLSK + 1
885                            END IF
886                         ELSE
887                            NOTROT = NOTROT + 1
888                            PSKIPPED = PSKIPPED + 1
889                            IJBLSK = IJBLSK + 1
890                         END IF
891 *
892                         IF( ( i.LE.SWBAND ) .AND. ( IJBLSK.GE.BLSKIP ) )
893      +                      THEN
894                            SVA( p ) = AAPP
895                            NOTROT = 0
896                            GO TO 2011
897                         END IF
898                         IF( ( i.LE.SWBAND ) .AND.
899      +                      ( PSKIPPED.GT.ROWSKIP ) ) THEN
900                            AAPP = -AAPP
901                            NOTROT = 0
902                            GO TO 2203
903                         END IF
904 *
905  2200                CONTINUE
906 *        end of the q-loop
907  2203                CONTINUE
908 *
909                      SVA( p ) = AAPP
910 *
911                   ELSE
912                      IF( AAPP.EQ.ZERO )NOTROT = NOTROT +
913      +                   MIN0( jgl+KBL-1, N ) - jgl + 1
914                      IF( AAPP.LT.ZERO )NOTROT = 0
915                   END IF
916
917  2100          CONTINUE
918 *     end of the p-loop
919  2010       CONTINUE
920 *     end of the jbc-loop
921  2011       CONTINUE
922 *2011 bailed out of the jbc-loop
923             DO 2012 p = igl, MIN0( igl+KBL-1, N )
924                SVA( p ) = ABS( SVA( p ) )
925  2012       CONTINUE
926 *
927  2000    CONTINUE
928 *2000 :: end of the ibr-loop
929 *
930 *     .. update SVA(N)
931          IF( ( SVA( N ).LT.ROOTBIG ) .AND. ( SVA( N ).GT.ROOTSFMIN ) )
932      +       THEN
933             SVA( N ) = SNRM2( M, A( 1, N ), 1 )*D( N )
934          ELSE
935             T = ZERO
936             AAPP = ONE
937             CALL SLASSQ( M, A( 1, N ), 1, T, AAPP )
938             SVA( N ) = T*SQRT( AAPP )*D( N )
939          END IF
940 *
941 *     Additional steering devices
942 *
943          IF( ( i.LT.SWBAND ) .AND. ( ( MXAAPQ.LE.ROOTTOL ) .OR.
944      +       ( ISWROT.LE.N ) ) )SWBAND = i
945 *
946          IF( ( i.GT.SWBAND+1 ) .AND. ( MXAAPQ.LT.FLOAT( N )*TOL ) .AND.
947      +       ( FLOAT( N )*MXAAPQ*MXSINJ.LT.TOL ) ) THEN
948             GO TO 1994
949          END IF
950 *
951          IF( NOTROT.GE.EMPTSW )GO TO 1994
952
953  1993 CONTINUE
954 *     end i=1:NSWEEP loop
955 * #:) Reaching this point means that the procedure has comleted the given
956 *     number of iterations.
957       INFO = NSWEEP - 1
958       GO TO 1995
959  1994 CONTINUE
960 * #:) Reaching this point means that during the i-th sweep all pivots were
961 *     below the given tolerance, causing early exit.
962 *
963       INFO = 0
964 * #:) INFO = 0 confirms successful iterations.
965  1995 CONTINUE
966 *
967 *     Sort the vector D.
968       DO 5991 p = 1, N - 1
969          q = ISAMAX( N-p+1, SVA( p ), 1 ) + p - 1
970          IF( p.NE.q ) THEN
971             TEMP1 = SVA( p )
972             SVA( p ) = SVA( q )
973             SVA( q ) = TEMP1
974             TEMP1 = D( p )
975             D( p ) = D( q )
976             D( q ) = TEMP1
977             CALL SSWAP( M, A( 1, p ), 1, A( 1, q ), 1 )
978             IF( RSVEC )CALL SSWAP( MVL, V( 1, p ), 1, V( 1, q ), 1 )
979          END IF
980  5991 CONTINUE
981 *
982       RETURN
983 *     ..
984 *     .. END OF SGSVJ0
985 *     ..
986       END