1 *> \brief \b SGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download SGEQR2 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqr2.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqr2.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqr2.f">
21 * SUBROUTINE SGEQR2( M, N, A, LDA, TAU, WORK, INFO )
23 * .. Scalar Arguments ..
24 * INTEGER INFO, LDA, M, N
26 * .. Array Arguments ..
27 * REAL A( LDA, * ), TAU( * ), WORK( * )
36 *> SGEQR2 computes a QR factorization of a real m by n matrix A:
46 *> The number of rows of the matrix A. M >= 0.
52 *> The number of columns of the matrix A. N >= 0.
57 *> A is REAL array, dimension (LDA,N)
58 *> On entry, the m by n matrix A.
59 *> On exit, the elements on and above the diagonal of the array
60 *> contain the min(m,n) by n upper trapezoidal matrix R (R is
61 *> upper triangular if m >= n); the elements below the diagonal,
62 *> with the array TAU, represent the orthogonal matrix Q as a
63 *> product of elementary reflectors (see Further Details).
69 *> The leading dimension of the array A. LDA >= max(1,M).
74 *> TAU is REAL array, dimension (min(M,N))
75 *> The scalar factors of the elementary reflectors (see Further
81 *> WORK is REAL array, dimension (N)
87 *> = 0: successful exit
88 *> < 0: if INFO = -i, the i-th argument had an illegal value
94 *> \author Univ. of Tennessee
95 *> \author Univ. of California Berkeley
96 *> \author Univ. of Colorado Denver
99 *> \date September 2012
101 *> \ingroup realGEcomputational
103 *> \par Further Details:
104 * =====================
108 *> The matrix Q is represented as a product of elementary reflectors
110 *> Q = H(1) H(2) . . . H(k), where k = min(m,n).
112 *> Each H(i) has the form
114 *> H(i) = I - tau * v * v**T
116 *> where tau is a real scalar, and v is a real vector with
117 *> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
118 *> and tau in TAU(i).
121 * =====================================================================
122 SUBROUTINE SGEQR2( M, N, A, LDA, TAU, WORK, INFO )
124 * -- LAPACK computational routine (version 3.4.2) --
125 * -- LAPACK is a software package provided by Univ. of Tennessee, --
126 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
129 * .. Scalar Arguments ..
130 INTEGER INFO, LDA, M, N
132 * .. Array Arguments ..
133 REAL A( LDA, * ), TAU( * ), WORK( * )
136 * =====================================================================
140 PARAMETER ( ONE = 1.0E+0 )
142 * .. Local Scalars ..
146 * .. External Subroutines ..
147 EXTERNAL SLARF, SLARFG, XERBLA
149 * .. Intrinsic Functions ..
152 * .. Executable Statements ..
154 * Test the input arguments
159 ELSE IF( N.LT.0 ) THEN
161 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
165 CALL XERBLA( 'SGEQR2', -INFO )
173 * Generate elementary reflector H(i) to annihilate A(i+1:m,i)
175 CALL SLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
179 * Apply H(i) to A(i:m,i+1:n) from the left
183 CALL SLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAU( I ),
184 $ A( I, I+1 ), LDA, WORK )