1 *> \brief \b DTFTTP copies a triangular matrix from the rectangular full packed format (TF) to the standard packed format (TP).
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DTFTTP + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtfttp.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtfttp.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtfttp.f">
21 * SUBROUTINE DTFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
23 * .. Scalar Arguments ..
24 * CHARACTER TRANSR, UPLO
27 * .. Array Arguments ..
28 * DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
37 *> DTFTTP copies a triangular matrix A from rectangular full packed
38 *> format (TF) to standard packed format (TP).
46 *> TRANSR is CHARACTER*1
47 *> = 'N': ARF is in Normal format;
48 *> = 'T': ARF is in Transpose format;
53 *> UPLO is CHARACTER*1
54 *> = 'U': A is upper triangular;
55 *> = 'L': A is lower triangular.
61 *> The order of the matrix A. N >= 0.
66 *> ARF is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
67 *> On entry, the upper or lower triangular matrix A stored in
68 *> RFP format. For a further discussion see Notes below.
73 *> AP is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ),
74 *> On exit, the upper or lower triangular matrix A, packed
75 *> columnwise in a linear array. The j-th column of A is stored
76 *> in the array AP as follows:
77 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
78 *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
84 *> = 0: successful exit
85 *> < 0: if INFO = -i, the i-th argument had an illegal value
91 *> \author Univ. of Tennessee
92 *> \author Univ. of California Berkeley
93 *> \author Univ. of Colorado Denver
96 *> \date September 2012
98 *> \ingroup doubleOTHERcomputational
100 *> \par Further Details:
101 * =====================
105 *> We first consider Rectangular Full Packed (RFP) Format when N is
106 *> even. We give an example where N = 6.
108 *> AP is Upper AP is Lower
110 *> 00 01 02 03 04 05 00
111 *> 11 12 13 14 15 10 11
112 *> 22 23 24 25 20 21 22
113 *> 33 34 35 30 31 32 33
114 *> 44 45 40 41 42 43 44
115 *> 55 50 51 52 53 54 55
118 *> Let TRANSR = 'N'. RFP holds AP as follows:
119 *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
120 *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
121 *> the transpose of the first three columns of AP upper.
122 *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
123 *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
124 *> the transpose of the last three columns of AP lower.
125 *> This covers the case N even and TRANSR = 'N'.
137 *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
138 *> transpose of RFP A above. One therefore gets:
143 *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
144 *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
145 *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
148 *> We then consider Rectangular Full Packed (RFP) Format when N is
149 *> odd. We give an example where N = 5.
151 *> AP is Upper AP is Lower
160 *> Let TRANSR = 'N'. RFP holds AP as follows:
161 *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
162 *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
163 *> the transpose of the first two columns of AP upper.
164 *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
165 *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
166 *> the transpose of the last two columns of AP lower.
167 *> This covers the case N odd and TRANSR = 'N'.
177 *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
178 *> transpose of RFP A above. One therefore gets:
182 *> 02 12 22 00 01 00 10 20 30 40 50
183 *> 03 13 23 33 11 33 11 21 31 41 51
184 *> 04 14 24 34 44 43 44 22 32 42 52
187 * =====================================================================
188 SUBROUTINE DTFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
190 * -- LAPACK computational routine (version 3.4.2) --
191 * -- LAPACK is a software package provided by Univ. of Tennessee, --
192 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
195 * .. Scalar Arguments ..
196 CHARACTER TRANSR, UPLO
199 * .. Array Arguments ..
200 DOUBLE PRECISION AP( 0: * ), ARF( 0: * )
203 * =====================================================================
207 * .. Local Scalars ..
208 LOGICAL LOWER, NISODD, NORMALTRANSR
209 INTEGER N1, N2, K, NT
211 INTEGER IJP, JP, LDA, JS
213 * .. External Functions ..
217 * .. External Subroutines ..
220 * .. Executable Statements ..
222 * Test the input parameters.
225 NORMALTRANSR = LSAME( TRANSR, 'N' )
226 LOWER = LSAME( UPLO, 'L' )
227 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
229 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
231 ELSE IF( N.LT.0 ) THEN
235 CALL XERBLA( 'DTFTTP', -INFO )
239 * Quick return if possible
245 IF( NORMALTRANSR ) THEN
253 * Size of array ARF(0:NT-1)
257 * Set N1 and N2 depending on LOWER
267 * If N is odd, set NISODD = .TRUE.
268 * If N is even, set K = N/2 and NISODD = .FALSE.
270 * set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
271 * where noe = 0 if n is even, noe = 1 if n is odd
273 IF( MOD( N, 2 ).EQ.0 ) THEN
282 * ARF^C has lda rows and n+1-noe cols
284 IF( .NOT.NORMALTRANSR )
287 * start execution: there are eight cases
293 IF( NORMALTRANSR ) THEN
295 * N is odd and TRANSR = 'N'
299 * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
300 * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
301 * T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
308 AP( IJP ) = ARF( IJ )
316 AP( IJP ) = ARF( IJ )
323 * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
324 * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
325 * T1 -> a(n2), T2 -> a(n1), S -> a(0)
331 AP( IJP ) = ARF( IJ )
340 AP( IJP ) = ARF( IJ )
350 * N is odd and TRANSR = 'T'
354 * SRPA for LOWER, TRANSPOSE and N is odd
355 * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
356 * T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
360 DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
361 AP( IJP ) = ARF( IJ )
367 DO IJ = JS, JS + N2 - J - 1
368 AP( IJP ) = ARF( IJ )
376 * SRPA for UPPER, TRANSPOSE and N is odd
377 * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
378 * T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
384 AP( IJP ) = ARF( IJ )
390 DO IJ = I, I + ( N1+I )*LDA, LDA
391 AP( IJP ) = ARF( IJ )
404 IF( NORMALTRANSR ) THEN
406 * N is even and TRANSR = 'N'
410 * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
411 * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
412 * T1 -> a(1), T2 -> a(0), S -> a(k+1)
419 AP( IJP ) = ARF( IJ )
427 AP( IJP ) = ARF( IJ )
434 * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
435 * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
436 * T1 -> a(k+1), T2 -> a(k), S -> a(0)
442 AP( IJP ) = ARF( IJ )
451 AP( IJP ) = ARF( IJ )
461 * N is even and TRANSR = 'T'
465 * SRPA for LOWER, TRANSPOSE and N is even (see paper)
466 * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
467 * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
471 DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
472 AP( IJP ) = ARF( IJ )
478 DO IJ = JS, JS + K - J - 1
479 AP( IJP ) = ARF( IJ )
487 * SRPA for UPPER, TRANSPOSE and N is even (see paper)
488 * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
489 * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
495 AP( IJP ) = ARF( IJ )
501 DO IJ = I, I + ( K+I )*LDA, LDA
502 AP( IJP ) = ARF( IJ )