3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DSYGVX + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvx.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvx.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvx.f">
21 * SUBROUTINE DSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
22 * VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
23 * LWORK, IWORK, IFAIL, INFO )
25 * .. Scalar Arguments ..
26 * CHARACTER JOBZ, RANGE, UPLO
27 * INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
28 * DOUBLE PRECISION ABSTOL, VL, VU
30 * .. Array Arguments ..
31 * INTEGER IFAIL( * ), IWORK( * )
32 * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
42 *> DSYGVX computes selected eigenvalues, and optionally, eigenvectors
43 *> of a real generalized symmetric-definite eigenproblem, of the form
44 *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
45 *> and B are assumed to be symmetric and B is also positive definite.
46 *> Eigenvalues and eigenvectors can be selected by specifying either a
47 *> range of values or a range of indices for the desired eigenvalues.
56 *> Specifies the problem type to be solved:
57 *> = 1: A*x = (lambda)*B*x
58 *> = 2: A*B*x = (lambda)*x
59 *> = 3: B*A*x = (lambda)*x
64 *> JOBZ is CHARACTER*1
65 *> = 'N': Compute eigenvalues only;
66 *> = 'V': Compute eigenvalues and eigenvectors.
71 *> RANGE is CHARACTER*1
72 *> = 'A': all eigenvalues will be found.
73 *> = 'V': all eigenvalues in the half-open interval (VL,VU]
75 *> = 'I': the IL-th through IU-th eigenvalues will be found.
80 *> UPLO is CHARACTER*1
81 *> = 'U': Upper triangle of A and B are stored;
82 *> = 'L': Lower triangle of A and B are stored.
88 *> The order of the matrix pencil (A,B). N >= 0.
93 *> A is DOUBLE PRECISION array, dimension (LDA, N)
94 *> On entry, the symmetric matrix A. If UPLO = 'U', the
95 *> leading N-by-N upper triangular part of A contains the
96 *> upper triangular part of the matrix A. If UPLO = 'L',
97 *> the leading N-by-N lower triangular part of A contains
98 *> the lower triangular part of the matrix A.
100 *> On exit, the lower triangle (if UPLO='L') or the upper
101 *> triangle (if UPLO='U') of A, including the diagonal, is
108 *> The leading dimension of the array A. LDA >= max(1,N).
113 *> B is DOUBLE PRECISION array, dimension (LDB, N)
114 *> On entry, the symmetric matrix B. If UPLO = 'U', the
115 *> leading N-by-N upper triangular part of B contains the
116 *> upper triangular part of the matrix B. If UPLO = 'L',
117 *> the leading N-by-N lower triangular part of B contains
118 *> the lower triangular part of the matrix B.
120 *> On exit, if INFO <= N, the part of B containing the matrix is
121 *> overwritten by the triangular factor U or L from the Cholesky
122 *> factorization B = U**T*U or B = L*L**T.
128 *> The leading dimension of the array B. LDB >= max(1,N).
133 *> VL is DOUBLE PRECISION
134 *> If RANGE='V', the lower bound of the interval to
135 *> be searched for eigenvalues. VL < VU.
136 *> Not referenced if RANGE = 'A' or 'I'.
141 *> VU is DOUBLE PRECISION
142 *> If RANGE='V', the upper bound of the interval to
143 *> be searched for eigenvalues. VL < VU.
144 *> Not referenced if RANGE = 'A' or 'I'.
150 *> If RANGE='I', the index of the
151 *> smallest eigenvalue to be returned.
152 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
153 *> Not referenced if RANGE = 'A' or 'V'.
159 *> If RANGE='I', the index of the
160 *> largest eigenvalue to be returned.
161 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
162 *> Not referenced if RANGE = 'A' or 'V'.
167 *> ABSTOL is DOUBLE PRECISION
168 *> The absolute error tolerance for the eigenvalues.
169 *> An approximate eigenvalue is accepted as converged
170 *> when it is determined to lie in an interval [a,b]
171 *> of width less than or equal to
173 *> ABSTOL + EPS * max( |a|,|b| ) ,
175 *> where EPS is the machine precision. If ABSTOL is less than
176 *> or equal to zero, then EPS*|T| will be used in its place,
177 *> where |T| is the 1-norm of the tridiagonal matrix obtained
178 *> by reducing C to tridiagonal form, where C is the symmetric
179 *> matrix of the standard symmetric problem to which the
180 *> generalized problem is transformed.
182 *> Eigenvalues will be computed most accurately when ABSTOL is
183 *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
184 *> If this routine returns with INFO>0, indicating that some
185 *> eigenvectors did not converge, try setting ABSTOL to
192 *> The total number of eigenvalues found. 0 <= M <= N.
193 *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
198 *> W is DOUBLE PRECISION array, dimension (N)
199 *> On normal exit, the first M elements contain the selected
200 *> eigenvalues in ascending order.
205 *> Z is DOUBLE PRECISION array, dimension (LDZ, max(1,M))
206 *> If JOBZ = 'N', then Z is not referenced.
207 *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
208 *> contain the orthonormal eigenvectors of the matrix A
209 *> corresponding to the selected eigenvalues, with the i-th
210 *> column of Z holding the eigenvector associated with W(i).
211 *> The eigenvectors are normalized as follows:
212 *> if ITYPE = 1 or 2, Z**T*B*Z = I;
213 *> if ITYPE = 3, Z**T*inv(B)*Z = I.
215 *> If an eigenvector fails to converge, then that column of Z
216 *> contains the latest approximation to the eigenvector, and the
217 *> index of the eigenvector is returned in IFAIL.
218 *> Note: the user must ensure that at least max(1,M) columns are
219 *> supplied in the array Z; if RANGE = 'V', the exact value of M
220 *> is not known in advance and an upper bound must be used.
226 *> The leading dimension of the array Z. LDZ >= 1, and if
227 *> JOBZ = 'V', LDZ >= max(1,N).
232 *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
233 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
239 *> The length of the array WORK. LWORK >= max(1,8*N).
240 *> For optimal efficiency, LWORK >= (NB+3)*N,
241 *> where NB is the blocksize for DSYTRD returned by ILAENV.
243 *> If LWORK = -1, then a workspace query is assumed; the routine
244 *> only calculates the optimal size of the WORK array, returns
245 *> this value as the first entry of the WORK array, and no error
246 *> message related to LWORK is issued by XERBLA.
251 *> IWORK is INTEGER array, dimension (5*N)
256 *> IFAIL is INTEGER array, dimension (N)
257 *> If JOBZ = 'V', then if INFO = 0, the first M elements of
258 *> IFAIL are zero. If INFO > 0, then IFAIL contains the
259 *> indices of the eigenvectors that failed to converge.
260 *> If JOBZ = 'N', then IFAIL is not referenced.
266 *> = 0: successful exit
267 *> < 0: if INFO = -i, the i-th argument had an illegal value
268 *> > 0: DPOTRF or DSYEVX returned an error code:
269 *> <= N: if INFO = i, DSYEVX failed to converge;
270 *> i eigenvectors failed to converge. Their indices
271 *> are stored in array IFAIL.
272 *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
273 *> minor of order i of B is not positive definite.
274 *> The factorization of B could not be completed and
275 *> no eigenvalues or eigenvectors were computed.
281 *> \author Univ. of Tennessee
282 *> \author Univ. of California Berkeley
283 *> \author Univ. of Colorado Denver
288 *> \ingroup doubleSYeigen
290 *> \par Contributors:
293 *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
295 * =====================================================================
296 SUBROUTINE DSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
297 $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
298 $ LWORK, IWORK, IFAIL, INFO )
300 * -- LAPACK driver routine (version 3.6.1) --
301 * -- LAPACK is a software package provided by Univ. of Tennessee, --
302 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
305 * .. Scalar Arguments ..
306 CHARACTER JOBZ, RANGE, UPLO
307 INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
308 DOUBLE PRECISION ABSTOL, VL, VU
310 * .. Array Arguments ..
311 INTEGER IFAIL( * ), IWORK( * )
312 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
316 * =====================================================================
320 PARAMETER ( ONE = 1.0D+0 )
322 * .. Local Scalars ..
323 LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
325 INTEGER LWKMIN, LWKOPT, NB
327 * .. External Functions ..
330 EXTERNAL LSAME, ILAENV
332 * .. External Subroutines ..
333 EXTERNAL DPOTRF, DSYEVX, DSYGST, DTRMM, DTRSM, XERBLA
335 * .. Intrinsic Functions ..
338 * .. Executable Statements ..
340 * Test the input parameters.
342 UPPER = LSAME( UPLO, 'U' )
343 WANTZ = LSAME( JOBZ, 'V' )
344 ALLEIG = LSAME( RANGE, 'A' )
345 VALEIG = LSAME( RANGE, 'V' )
346 INDEIG = LSAME( RANGE, 'I' )
347 LQUERY = ( LWORK.EQ.-1 )
350 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
352 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
354 ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
356 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
358 ELSE IF( N.LT.0 ) THEN
360 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
362 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
366 IF( N.GT.0 .AND. VU.LE.VL )
368 ELSE IF( INDEIG ) THEN
369 IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
371 ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
377 IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
383 LWKMIN = MAX( 1, 8*N )
384 NB = ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 )
385 LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
388 IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
394 CALL XERBLA( 'DSYGVX', -INFO )
396 ELSE IF( LQUERY ) THEN
400 * Quick return if possible
407 * Form a Cholesky factorization of B.
409 CALL DPOTRF( UPLO, N, B, LDB, INFO )
415 * Transform problem to standard eigenvalue problem and solve.
417 CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
418 CALL DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
419 $ M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
423 * Backtransform eigenvectors to the original problem.
427 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
429 * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
430 * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
438 CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
441 ELSE IF( ITYPE.EQ.3 ) THEN
443 * For B*A*x=(lambda)*x;
444 * backtransform eigenvectors: x = L*y or U**T*y
452 CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
457 * Set WORK(1) to optimal workspace size.