3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DSYGVD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvd.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvd.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvd.f">
21 * SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
22 * LWORK, IWORK, LIWORK, INFO )
24 * .. Scalar Arguments ..
25 * CHARACTER JOBZ, UPLO
26 * INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
28 * .. Array Arguments ..
30 * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
39 *> DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
40 *> of a real generalized symmetric-definite eigenproblem, of the form
41 *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
42 *> B are assumed to be symmetric and B is also positive definite.
43 *> If eigenvectors are desired, it uses a divide and conquer algorithm.
45 *> The divide and conquer algorithm makes very mild assumptions about
46 *> floating point arithmetic. It will work on machines with a guard
47 *> digit in add/subtract, or on those binary machines without guard
48 *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
49 *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
50 *> without guard digits, but we know of none.
59 *> Specifies the problem type to be solved:
60 *> = 1: A*x = (lambda)*B*x
61 *> = 2: A*B*x = (lambda)*x
62 *> = 3: B*A*x = (lambda)*x
67 *> JOBZ is CHARACTER*1
68 *> = 'N': Compute eigenvalues only;
69 *> = 'V': Compute eigenvalues and eigenvectors.
74 *> UPLO is CHARACTER*1
75 *> = 'U': Upper triangles of A and B are stored;
76 *> = 'L': Lower triangles of A and B are stored.
82 *> The order of the matrices A and B. N >= 0.
87 *> A is DOUBLE PRECISION array, dimension (LDA, N)
88 *> On entry, the symmetric matrix A. If UPLO = 'U', the
89 *> leading N-by-N upper triangular part of A contains the
90 *> upper triangular part of the matrix A. If UPLO = 'L',
91 *> the leading N-by-N lower triangular part of A contains
92 *> the lower triangular part of the matrix A.
94 *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
95 *> matrix Z of eigenvectors. The eigenvectors are normalized
97 *> if ITYPE = 1 or 2, Z**T*B*Z = I;
98 *> if ITYPE = 3, Z**T*inv(B)*Z = I.
99 *> If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
100 *> or the lower triangle (if UPLO='L') of A, including the
101 *> diagonal, is destroyed.
107 *> The leading dimension of the array A. LDA >= max(1,N).
112 *> B is DOUBLE PRECISION array, dimension (LDB, N)
113 *> On entry, the symmetric matrix B. If UPLO = 'U', the
114 *> leading N-by-N upper triangular part of B contains the
115 *> upper triangular part of the matrix B. If UPLO = 'L',
116 *> the leading N-by-N lower triangular part of B contains
117 *> the lower triangular part of the matrix B.
119 *> On exit, if INFO <= N, the part of B containing the matrix is
120 *> overwritten by the triangular factor U or L from the Cholesky
121 *> factorization B = U**T*U or B = L*L**T.
127 *> The leading dimension of the array B. LDB >= max(1,N).
132 *> W is DOUBLE PRECISION array, dimension (N)
133 *> If INFO = 0, the eigenvalues in ascending order.
138 *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
139 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
145 *> The dimension of the array WORK.
146 *> If N <= 1, LWORK >= 1.
147 *> If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
148 *> If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
150 *> If LWORK = -1, then a workspace query is assumed; the routine
151 *> only calculates the optimal sizes of the WORK and IWORK
152 *> arrays, returns these values as the first entries of the WORK
153 *> and IWORK arrays, and no error message related to LWORK or
154 *> LIWORK is issued by XERBLA.
159 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
160 *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
166 *> The dimension of the array IWORK.
167 *> If N <= 1, LIWORK >= 1.
168 *> If JOBZ = 'N' and N > 1, LIWORK >= 1.
169 *> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
171 *> If LIWORK = -1, then a workspace query is assumed; the
172 *> routine only calculates the optimal sizes of the WORK and
173 *> IWORK arrays, returns these values as the first entries of
174 *> the WORK and IWORK arrays, and no error message related to
175 *> LWORK or LIWORK is issued by XERBLA.
181 *> = 0: successful exit
182 *> < 0: if INFO = -i, the i-th argument had an illegal value
183 *> > 0: DPOTRF or DSYEVD returned an error code:
184 *> <= N: if INFO = i and JOBZ = 'N', then the algorithm
185 *> failed to converge; i off-diagonal elements of an
186 *> intermediate tridiagonal form did not converge to
188 *> if INFO = i and JOBZ = 'V', then the algorithm
189 *> failed to compute an eigenvalue while working on
190 *> the submatrix lying in rows and columns INFO/(N+1)
191 *> through mod(INFO,N+1);
192 *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
193 *> minor of order i of B is not positive definite.
194 *> The factorization of B could not be completed and
195 *> no eigenvalues or eigenvectors were computed.
201 *> \author Univ. of Tennessee
202 *> \author Univ. of California Berkeley
203 *> \author Univ. of Colorado Denver
206 *> \date November 2015
208 *> \ingroup doubleSYeigen
210 *> \par Further Details:
211 * =====================
215 *> Modified so that no backsubstitution is performed if DSYEVD fails to
216 *> converge (NEIG in old code could be greater than N causing out of
217 *> bounds reference to A - reported by Ralf Meyer). Also corrected the
218 *> description of INFO and the test on ITYPE. Sven, 16 Feb 05.
221 *> \par Contributors:
224 *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
226 * =====================================================================
227 SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
228 $ LWORK, IWORK, LIWORK, INFO )
230 * -- LAPACK driver routine (version 3.6.0) --
231 * -- LAPACK is a software package provided by Univ. of Tennessee, --
232 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
235 * .. Scalar Arguments ..
237 INTEGER INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
239 * .. Array Arguments ..
241 DOUBLE PRECISION A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
244 * =====================================================================
248 PARAMETER ( ONE = 1.0D+0 )
250 * .. Local Scalars ..
251 LOGICAL LQUERY, UPPER, WANTZ
253 INTEGER LIOPT, LIWMIN, LOPT, LWMIN
255 * .. External Functions ..
259 * .. External Subroutines ..
260 EXTERNAL DPOTRF, DSYEVD, DSYGST, DTRMM, DTRSM, XERBLA
262 * .. Intrinsic Functions ..
265 * .. Executable Statements ..
267 * Test the input parameters.
269 WANTZ = LSAME( JOBZ, 'V' )
270 UPPER = LSAME( UPLO, 'U' )
271 LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
277 ELSE IF( WANTZ ) THEN
279 LWMIN = 1 + 6*N + 2*N**2
286 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
288 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
290 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
292 ELSE IF( N.LT.0 ) THEN
294 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
296 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
304 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
306 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
312 CALL XERBLA( 'DSYGVD', -INFO )
314 ELSE IF( LQUERY ) THEN
318 * Quick return if possible
323 * Form a Cholesky factorization of B.
325 CALL DPOTRF( UPLO, N, B, LDB, INFO )
331 * Transform problem to standard eigenvalue problem and solve.
333 CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
334 CALL DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
336 LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
337 LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
339 IF( WANTZ .AND. INFO.EQ.0 ) THEN
341 * Backtransform eigenvectors to the original problem.
343 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
345 * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
346 * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
354 CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
357 ELSE IF( ITYPE.EQ.3 ) THEN
359 * For B*A*x=(lambda)*x;
360 * backtransform eigenvectors: x = L*y or U**T*y
368 CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,