1 *> \brief <b> DSYEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY matrices</b>
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DSYEVD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyevd.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyevd.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyevd.f">
21 * SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
24 * .. Scalar Arguments ..
25 * CHARACTER JOBZ, UPLO
26 * INTEGER INFO, LDA, LIWORK, LWORK, N
28 * .. Array Arguments ..
30 * DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
39 *> DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
40 *> real symmetric matrix A. If eigenvectors are desired, it uses a
41 *> divide and conquer algorithm.
43 *> The divide and conquer algorithm makes very mild assumptions about
44 *> floating point arithmetic. It will work on machines with a guard
45 *> digit in add/subtract, or on those binary machines without guard
46 *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
47 *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
48 *> without guard digits, but we know of none.
50 *> Because of large use of BLAS of level 3, DSYEVD needs N**2 more
51 *> workspace than DSYEVX.
59 *> JOBZ is CHARACTER*1
60 *> = 'N': Compute eigenvalues only;
61 *> = 'V': Compute eigenvalues and eigenvectors.
66 *> UPLO is CHARACTER*1
67 *> = 'U': Upper triangle of A is stored;
68 *> = 'L': Lower triangle of A is stored.
74 *> The order of the matrix A. N >= 0.
79 *> A is DOUBLE PRECISION array, dimension (LDA, N)
80 *> On entry, the symmetric matrix A. If UPLO = 'U', the
81 *> leading N-by-N upper triangular part of A contains the
82 *> upper triangular part of the matrix A. If UPLO = 'L',
83 *> the leading N-by-N lower triangular part of A contains
84 *> the lower triangular part of the matrix A.
85 *> On exit, if JOBZ = 'V', then if INFO = 0, A contains the
86 *> orthonormal eigenvectors of the matrix A.
87 *> If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
88 *> or the upper triangle (if UPLO='U') of A, including the
89 *> diagonal, is destroyed.
95 *> The leading dimension of the array A. LDA >= max(1,N).
100 *> W is DOUBLE PRECISION array, dimension (N)
101 *> If INFO = 0, the eigenvalues in ascending order.
106 *> WORK is DOUBLE PRECISION array,
108 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
114 *> The dimension of the array WORK.
115 *> If N <= 1, LWORK must be at least 1.
116 *> If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
117 *> If JOBZ = 'V' and N > 1, LWORK must be at least
120 *> If LWORK = -1, then a workspace query is assumed; the routine
121 *> only calculates the optimal sizes of the WORK and IWORK
122 *> arrays, returns these values as the first entries of the WORK
123 *> and IWORK arrays, and no error message related to LWORK or
124 *> LIWORK is issued by XERBLA.
129 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
130 *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
136 *> The dimension of the array IWORK.
137 *> If N <= 1, LIWORK must be at least 1.
138 *> If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
139 *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
141 *> If LIWORK = -1, then a workspace query is assumed; the
142 *> routine only calculates the optimal sizes of the WORK and
143 *> IWORK arrays, returns these values as the first entries of
144 *> the WORK and IWORK arrays, and no error message related to
145 *> LWORK or LIWORK is issued by XERBLA.
151 *> = 0: successful exit
152 *> < 0: if INFO = -i, the i-th argument had an illegal value
153 *> > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
154 *> to converge; i off-diagonal elements of an intermediate
155 *> tridiagonal form did not converge to zero;
156 *> if INFO = i and JOBZ = 'V', then the algorithm failed
157 *> to compute an eigenvalue while working on the submatrix
158 *> lying in rows and columns INFO/(N+1) through
165 *> \author Univ. of Tennessee
166 *> \author Univ. of California Berkeley
167 *> \author Univ. of Colorado Denver
170 *> \date September 2012
172 *> \ingroup doubleSYeigen
174 *> \par Contributors:
177 *> Jeff Rutter, Computer Science Division, University of California
178 *> at Berkeley, USA \n
179 *> Modified by Francoise Tisseur, University of Tennessee \n
180 *> Modified description of INFO. Sven, 16 Feb 05. \n
184 * =====================================================================
185 SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK,
188 * -- LAPACK driver routine (version 3.4.2) --
189 * -- LAPACK is a software package provided by Univ. of Tennessee, --
190 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
193 * .. Scalar Arguments ..
195 INTEGER INFO, LDA, LIWORK, LWORK, N
197 * .. Array Arguments ..
199 DOUBLE PRECISION A( LDA, * ), W( * ), WORK( * )
202 * =====================================================================
205 DOUBLE PRECISION ZERO, ONE
206 PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
208 * .. Local Scalars ..
210 LOGICAL LOWER, LQUERY, WANTZ
211 INTEGER IINFO, INDE, INDTAU, INDWK2, INDWRK, ISCALE,
212 $ LIOPT, LIWMIN, LLWORK, LLWRK2, LOPT, LWMIN
213 DOUBLE PRECISION ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
216 * .. External Functions ..
219 DOUBLE PRECISION DLAMCH, DLANSY
220 EXTERNAL LSAME, DLAMCH, DLANSY, ILAENV
222 * .. External Subroutines ..
223 EXTERNAL DLACPY, DLASCL, DORMTR, DSCAL, DSTEDC, DSTERF,
226 * .. Intrinsic Functions ..
229 * .. Executable Statements ..
231 * Test the input parameters.
233 WANTZ = LSAME( JOBZ, 'V' )
234 LOWER = LSAME( UPLO, 'L' )
235 LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
238 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
240 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
242 ELSE IF( N.LT.0 ) THEN
244 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
257 LWMIN = 1 + 6*N + 2*N**2
262 LOPT = MAX( LWMIN, 2*N +
263 $ ILAENV( 1, 'DSYTRD', UPLO, N, -1, -1, -1 ) )
269 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
271 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
277 CALL XERBLA( 'DSYEVD', -INFO )
279 ELSE IF( LQUERY ) THEN
283 * Quick return if possible
295 * Get machine constants.
297 SAFMIN = DLAMCH( 'Safe minimum' )
298 EPS = DLAMCH( 'Precision' )
299 SMLNUM = SAFMIN / EPS
300 BIGNUM = ONE / SMLNUM
301 RMIN = SQRT( SMLNUM )
302 RMAX = SQRT( BIGNUM )
304 * Scale matrix to allowable range, if necessary.
306 ANRM = DLANSY( 'M', UPLO, N, A, LDA, WORK )
308 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
311 ELSE IF( ANRM.GT.RMAX ) THEN
316 $ CALL DLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
318 * Call DSYTRD to reduce symmetric matrix to tridiagonal form.
323 LLWORK = LWORK - INDWRK + 1
324 INDWK2 = INDWRK + N*N
325 LLWRK2 = LWORK - INDWK2 + 1
327 CALL DSYTRD( UPLO, N, A, LDA, W, WORK( INDE ), WORK( INDTAU ),
328 $ WORK( INDWRK ), LLWORK, IINFO )
330 * For eigenvalues only, call DSTERF. For eigenvectors, first call
331 * DSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the
332 * tridiagonal matrix, then call DORMTR to multiply it by the
333 * Householder transformations stored in A.
335 IF( .NOT.WANTZ ) THEN
336 CALL DSTERF( N, W, WORK( INDE ), INFO )
338 CALL DSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
339 $ WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
340 CALL DORMTR( 'L', UPLO, 'N', N, N, A, LDA, WORK( INDTAU ),
341 $ WORK( INDWRK ), N, WORK( INDWK2 ), LLWRK2, IINFO )
342 CALL DLACPY( 'A', N, N, WORK( INDWRK ), N, A, LDA )
345 * If matrix was scaled, then rescale eigenvalues appropriately.
348 $ CALL DSCAL( N, ONE / SIGMA, W, 1 )