3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DSPGV + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dspgv.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dspgv.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dspgv.f">
21 * SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
24 * .. Scalar Arguments ..
25 * CHARACTER JOBZ, UPLO
26 * INTEGER INFO, ITYPE, LDZ, N
28 * .. Array Arguments ..
29 * DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
39 *> DSPGV computes all the eigenvalues and, optionally, the eigenvectors
40 *> of a real generalized symmetric-definite eigenproblem, of the form
41 *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
42 *> Here A and B are assumed to be symmetric, stored in packed format,
43 *> and B is also positive definite.
52 *> Specifies the problem type to be solved:
53 *> = 1: A*x = (lambda)*B*x
54 *> = 2: A*B*x = (lambda)*x
55 *> = 3: B*A*x = (lambda)*x
60 *> JOBZ is CHARACTER*1
61 *> = 'N': Compute eigenvalues only;
62 *> = 'V': Compute eigenvalues and eigenvectors.
67 *> UPLO is CHARACTER*1
68 *> = 'U': Upper triangles of A and B are stored;
69 *> = 'L': Lower triangles of A and B are stored.
75 *> The order of the matrices A and B. N >= 0.
80 *> AP is DOUBLE PRECISION array, dimension
82 *> On entry, the upper or lower triangle of the symmetric matrix
83 *> A, packed columnwise in a linear array. The j-th column of A
84 *> is stored in the array AP as follows:
85 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
86 *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
88 *> On exit, the contents of AP are destroyed.
93 *> BP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
94 *> On entry, the upper or lower triangle of the symmetric matrix
95 *> B, packed columnwise in a linear array. The j-th column of B
96 *> is stored in the array BP as follows:
97 *> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
98 *> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
100 *> On exit, the triangular factor U or L from the Cholesky
101 *> factorization B = U**T*U or B = L*L**T, in the same storage
107 *> W is DOUBLE PRECISION array, dimension (N)
108 *> If INFO = 0, the eigenvalues in ascending order.
113 *> Z is DOUBLE PRECISION array, dimension (LDZ, N)
114 *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
115 *> eigenvectors. The eigenvectors are normalized as follows:
116 *> if ITYPE = 1 or 2, Z**T*B*Z = I;
117 *> if ITYPE = 3, Z**T*inv(B)*Z = I.
118 *> If JOBZ = 'N', then Z is not referenced.
124 *> The leading dimension of the array Z. LDZ >= 1, and if
125 *> JOBZ = 'V', LDZ >= max(1,N).
130 *> WORK is DOUBLE PRECISION array, dimension (3*N)
136 *> = 0: successful exit
137 *> < 0: if INFO = -i, the i-th argument had an illegal value
138 *> > 0: DPPTRF or DSPEV returned an error code:
139 *> <= N: if INFO = i, DSPEV failed to converge;
140 *> i off-diagonal elements of an intermediate
141 *> tridiagonal form did not converge to zero.
142 *> > N: if INFO = n + i, for 1 <= i <= n, then the leading
143 *> minor of order i of B is not positive definite.
144 *> The factorization of B could not be completed and
145 *> no eigenvalues or eigenvectors were computed.
151 *> \author Univ. of Tennessee
152 *> \author Univ. of California Berkeley
153 *> \author Univ. of Colorado Denver
156 *> \date November 2015
158 *> \ingroup doubleOTHEReigen
160 * =====================================================================
161 SUBROUTINE DSPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
164 * -- LAPACK driver routine (version 3.6.0) --
165 * -- LAPACK is a software package provided by Univ. of Tennessee, --
166 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169 * .. Scalar Arguments ..
171 INTEGER INFO, ITYPE, LDZ, N
173 * .. Array Arguments ..
174 DOUBLE PRECISION AP( * ), BP( * ), W( * ), WORK( * ),
178 * =====================================================================
180 * .. Local Scalars ..
185 * .. External Functions ..
189 * .. External Subroutines ..
190 EXTERNAL DPPTRF, DSPEV, DSPGST, DTPMV, DTPSV, XERBLA
192 * .. Executable Statements ..
194 * Test the input parameters.
196 WANTZ = LSAME( JOBZ, 'V' )
197 UPPER = LSAME( UPLO, 'U' )
200 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
202 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
204 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
206 ELSE IF( N.LT.0 ) THEN
208 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
212 CALL XERBLA( 'DSPGV ', -INFO )
216 * Quick return if possible
221 * Form a Cholesky factorization of B.
223 CALL DPPTRF( UPLO, N, BP, INFO )
229 * Transform problem to standard eigenvalue problem and solve.
231 CALL DSPGST( ITYPE, UPLO, N, AP, BP, INFO )
232 CALL DSPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, INFO )
236 * Backtransform eigenvectors to the original problem.
241 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
243 * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
244 * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
253 CALL DTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
257 ELSE IF( ITYPE.EQ.3 ) THEN
259 * For B*A*x=(lambda)*x;
260 * backtransform eigenvectors: x = L*y or U**T*y
269 CALL DTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),