3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DPFTRF + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpftrf.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpftrf.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpftrf.f">
21 * SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
23 * .. Scalar Arguments ..
24 * CHARACTER TRANSR, UPLO
27 * .. Array Arguments ..
28 * DOUBLE PRECISION A( 0: * )
36 *> DPFTRF computes the Cholesky factorization of a real symmetric
37 *> positive definite matrix A.
39 *> The factorization has the form
40 *> A = U**T * U, if UPLO = 'U', or
41 *> A = L * L**T, if UPLO = 'L',
42 *> where U is an upper triangular matrix and L is lower triangular.
44 *> This is the block version of the algorithm, calling Level 3 BLAS.
52 *> TRANSR is CHARACTER*1
53 *> = 'N': The Normal TRANSR of RFP A is stored;
54 *> = 'T': The Transpose TRANSR of RFP A is stored.
59 *> UPLO is CHARACTER*1
60 *> = 'U': Upper triangle of RFP A is stored;
61 *> = 'L': Lower triangle of RFP A is stored.
67 *> The order of the matrix A. N >= 0.
72 *> A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 );
73 *> On entry, the symmetric matrix A in RFP format. RFP format is
74 *> described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
75 *> then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
76 *> (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'T' then RFP is
77 *> the transpose of RFP A as defined when
78 *> TRANSR = 'N'. The contents of RFP A are defined by UPLO as
79 *> follows: If UPLO = 'U' the RFP A contains the NT elements of
80 *> upper packed A. If UPLO = 'L' the RFP A contains the elements
81 *> of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
82 *> 'T'. When TRANSR is 'N' the LDA is N+1 when N is even and N
83 *> is odd. See the Note below for more details.
85 *> On exit, if INFO = 0, the factor U or L from the Cholesky
86 *> factorization RFP A = U**T*U or RFP A = L*L**T.
92 *> = 0: successful exit
93 *> < 0: if INFO = -i, the i-th argument had an illegal value
94 *> > 0: if INFO = i, the leading minor of order i is not
95 *> positive definite, and the factorization could not be
102 *> \author Univ. of Tennessee
103 *> \author Univ. of California Berkeley
104 *> \author Univ. of Colorado Denver
107 *> \date November 2011
109 *> \ingroup doubleOTHERcomputational
111 *> \par Further Details:
112 * =====================
116 *> We first consider Rectangular Full Packed (RFP) Format when N is
117 *> even. We give an example where N = 6.
119 *> AP is Upper AP is Lower
121 *> 00 01 02 03 04 05 00
122 *> 11 12 13 14 15 10 11
123 *> 22 23 24 25 20 21 22
124 *> 33 34 35 30 31 32 33
125 *> 44 45 40 41 42 43 44
126 *> 55 50 51 52 53 54 55
129 *> Let TRANSR = 'N'. RFP holds AP as follows:
130 *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
131 *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
132 *> the transpose of the first three columns of AP upper.
133 *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
134 *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
135 *> the transpose of the last three columns of AP lower.
136 *> This covers the case N even and TRANSR = 'N'.
148 *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
149 *> transpose of RFP A above. One therefore gets:
154 *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
155 *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
156 *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
159 *> We then consider Rectangular Full Packed (RFP) Format when N is
160 *> odd. We give an example where N = 5.
162 *> AP is Upper AP is Lower
171 *> Let TRANSR = 'N'. RFP holds AP as follows:
172 *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
173 *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
174 *> the transpose of the first two columns of AP upper.
175 *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
176 *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
177 *> the transpose of the last two columns of AP lower.
178 *> This covers the case N odd and TRANSR = 'N'.
188 *> Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
189 *> transpose of RFP A above. One therefore gets:
193 *> 02 12 22 00 01 00 10 20 30 40 50
194 *> 03 13 23 33 11 33 11 21 31 41 51
195 *> 04 14 24 34 44 43 44 22 32 42 52
198 * =====================================================================
199 SUBROUTINE DPFTRF( TRANSR, UPLO, N, A, INFO )
201 * -- LAPACK computational routine (version 3.4.0) --
202 * -- LAPACK is a software package provided by Univ. of Tennessee, --
203 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
206 * .. Scalar Arguments ..
207 CHARACTER TRANSR, UPLO
210 * .. Array Arguments ..
211 DOUBLE PRECISION A( 0: * )
213 * =====================================================================
217 PARAMETER ( ONE = 1.0D+0 )
219 * .. Local Scalars ..
220 LOGICAL LOWER, NISODD, NORMALTRANSR
223 * .. External Functions ..
227 * .. External Subroutines ..
228 EXTERNAL XERBLA, DSYRK, DPOTRF, DTRSM
230 * .. Intrinsic Functions ..
233 * .. Executable Statements ..
235 * Test the input parameters.
238 NORMALTRANSR = LSAME( TRANSR, 'N' )
239 LOWER = LSAME( UPLO, 'L' )
240 IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
242 ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
244 ELSE IF( N.LT.0 ) THEN
248 CALL XERBLA( 'DPFTRF', -INFO )
252 * Quick return if possible
257 * If N is odd, set NISODD = .TRUE.
258 * If N is even, set K = N/2 and NISODD = .FALSE.
260 IF( MOD( N, 2 ).EQ.0 ) THEN
267 * Set N1 and N2 depending on LOWER
277 * start execution: there are eight cases
283 IF( NORMALTRANSR ) THEN
285 * N is odd and TRANSR = 'N'
289 * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
290 * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
291 * T1 -> a(0), T2 -> a(n), S -> a(n1)
293 CALL DPOTRF( 'L', N1, A( 0 ), N, INFO )
296 CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE, A( 0 ), N,
298 CALL DSYRK( 'U', 'N', N2, N1, -ONE, A( N1 ), N, ONE,
300 CALL DPOTRF( 'U', N2, A( N ), N, INFO )
306 * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
307 * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
308 * T1 -> a(n2), T2 -> a(n1), S -> a(0)
310 CALL DPOTRF( 'L', N1, A( N2 ), N, INFO )
313 CALL DTRSM( 'L', 'L', 'N', 'N', N1, N2, ONE, A( N2 ), N,
315 CALL DSYRK( 'U', 'T', N2, N1, -ONE, A( 0 ), N, ONE,
317 CALL DPOTRF( 'U', N2, A( N1 ), N, INFO )
325 * N is odd and TRANSR = 'T'
329 * SRPA for LOWER, TRANSPOSE and N is odd
330 * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
331 * T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
333 CALL DPOTRF( 'U', N1, A( 0 ), N1, INFO )
336 CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE, A( 0 ), N1,
338 CALL DSYRK( 'L', 'T', N2, N1, -ONE, A( N1*N1 ), N1, ONE,
340 CALL DPOTRF( 'L', N2, A( 1 ), N1, INFO )
346 * SRPA for UPPER, TRANSPOSE and N is odd
347 * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
348 * T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
350 CALL DPOTRF( 'U', N1, A( N2*N2 ), N2, INFO )
353 CALL DTRSM( 'R', 'U', 'N', 'N', N2, N1, ONE, A( N2*N2 ),
355 CALL DSYRK( 'L', 'N', N2, N1, -ONE, A( 0 ), N2, ONE,
357 CALL DPOTRF( 'L', N2, A( N1*N2 ), N2, INFO )
369 IF( NORMALTRANSR ) THEN
371 * N is even and TRANSR = 'N'
375 * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
376 * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
377 * T1 -> a(1), T2 -> a(0), S -> a(k+1)
379 CALL DPOTRF( 'L', K, A( 1 ), N+1, INFO )
382 CALL DTRSM( 'R', 'L', 'T', 'N', K, K, ONE, A( 1 ), N+1,
384 CALL DSYRK( 'U', 'N', K, K, -ONE, A( K+1 ), N+1, ONE,
386 CALL DPOTRF( 'U', K, A( 0 ), N+1, INFO )
392 * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
393 * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
394 * T1 -> a(k+1), T2 -> a(k), S -> a(0)
396 CALL DPOTRF( 'L', K, A( K+1 ), N+1, INFO )
399 CALL DTRSM( 'L', 'L', 'N', 'N', K, K, ONE, A( K+1 ),
401 CALL DSYRK( 'U', 'T', K, K, -ONE, A( 0 ), N+1, ONE,
403 CALL DPOTRF( 'U', K, A( K ), N+1, INFO )
411 * N is even and TRANSR = 'T'
415 * SRPA for LOWER, TRANSPOSE and N is even (see paper)
416 * T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
417 * T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
419 CALL DPOTRF( 'U', K, A( 0+K ), K, INFO )
422 CALL DTRSM( 'L', 'U', 'T', 'N', K, K, ONE, A( K ), N1,
423 $ A( K*( K+1 ) ), K )
424 CALL DSYRK( 'L', 'T', K, K, -ONE, A( K*( K+1 ) ), K, ONE,
426 CALL DPOTRF( 'L', K, A( 0 ), K, INFO )
432 * SRPA for UPPER, TRANSPOSE and N is even (see paper)
433 * T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0)
434 * T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
436 CALL DPOTRF( 'U', K, A( K*( K+1 ) ), K, INFO )
439 CALL DTRSM( 'R', 'U', 'N', 'N', K, K, ONE,
440 $ A( K*( K+1 ) ), K, A( 0 ), K )
441 CALL DSYRK( 'L', 'N', K, K, -ONE, A( 0 ), K, ONE,
443 CALL DPOTRF( 'L', K, A( K*K ), K, INFO )