1 *> \brief \b DLARSCL2 performs reciprocal diagonal scaling on a vector.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DLARSCL2 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarscl2.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarscl2.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarscl2.f">
21 * SUBROUTINE DLARSCL2 ( M, N, D, X, LDX )
23 * .. Scalar Arguments ..
26 * .. Array Arguments ..
27 * DOUBLE PRECISION D( * ), X( LDX, * )
36 *> DLARSCL2 performs a reciprocal diagonal scaling on an vector:
38 *> where the diagonal matrix D is stored as a vector.
40 *> Eventually to be replaced by BLAS_dge_diag_scale in the new BLAS
50 *> The number of rows of D and X. M >= 0.
56 *> The number of columns of X. N >= 0.
61 *> D is DOUBLE PRECISION array, dimension (M)
62 *> Diagonal matrix D, stored as a vector of length M.
67 *> X is DOUBLE PRECISION array, dimension (LDX,N)
68 *> On entry, the vector X to be scaled by D.
69 *> On exit, the scaled vector.
75 *> The leading dimension of the vector X. LDX >= M.
81 *> \author Univ. of Tennessee
82 *> \author Univ. of California Berkeley
83 *> \author Univ. of Colorado Denver
88 *> \ingroup doubleOTHERcomputational
90 * =====================================================================
91 SUBROUTINE DLARSCL2 ( M, N, D, X, LDX )
93 * -- LAPACK computational routine (version 3.6.1) --
94 * -- LAPACK is a software package provided by Univ. of Tennessee, --
95 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
98 * .. Scalar Arguments ..
101 * .. Array Arguments ..
102 DOUBLE PRECISION D( * ), X( LDX, * )
105 * =====================================================================
107 * .. Local Scalars ..
110 * .. Executable Statements ..
114 X( I, J ) = X( I, J ) / D( I )