1 *> \brief \b DLAED1 used by sstedc. Computes the updated eigensystem of a diagonal matrix after modification by a rank-one symmetric matrix. Used when the original matrix is tridiagonal.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DLAED1 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaed1.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaed1.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaed1.f">
21 * SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
24 * .. Scalar Arguments ..
25 * INTEGER CUTPNT, INFO, LDQ, N
26 * DOUBLE PRECISION RHO
28 * .. Array Arguments ..
29 * INTEGER INDXQ( * ), IWORK( * )
30 * DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
39 *> DLAED1 computes the updated eigensystem of a diagonal
40 *> matrix after modification by a rank-one symmetric matrix. This
41 *> routine is used only for the eigenproblem which requires all
42 *> eigenvalues and eigenvectors of a tridiagonal matrix. DLAED7 handles
43 *> the case in which eigenvalues only or eigenvalues and eigenvectors
44 *> of a full symmetric matrix (which was reduced to tridiagonal form)
47 *> T = Q(in) ( D(in) + RHO * Z*Z**T ) Q**T(in) = Q(out) * D(out) * Q**T(out)
49 *> where Z = Q**T*u, u is a vector of length N with ones in the
50 *> CUTPNT and CUTPNT + 1 th elements and zeros elsewhere.
52 *> The eigenvectors of the original matrix are stored in Q, and the
53 *> eigenvalues are in D. The algorithm consists of three stages:
55 *> The first stage consists of deflating the size of the problem
56 *> when there are multiple eigenvalues or if there is a zero in
57 *> the Z vector. For each such occurrence the dimension of the
58 *> secular equation problem is reduced by one. This stage is
59 *> performed by the routine DLAED2.
61 *> The second stage consists of calculating the updated
62 *> eigenvalues. This is done by finding the roots of the secular
63 *> equation via the routine DLAED4 (as called by DLAED3).
64 *> This routine also calculates the eigenvectors of the current
67 *> The final stage consists of computing the updated eigenvectors
68 *> directly using the updated eigenvalues. The eigenvectors for
69 *> the current problem are multiplied with the eigenvectors from
70 *> the overall problem.
79 *> The dimension of the symmetric tridiagonal matrix. N >= 0.
84 *> D is DOUBLE PRECISION array, dimension (N)
85 *> On entry, the eigenvalues of the rank-1-perturbed matrix.
86 *> On exit, the eigenvalues of the repaired matrix.
91 *> Q is DOUBLE PRECISION array, dimension (LDQ,N)
92 *> On entry, the eigenvectors of the rank-1-perturbed matrix.
93 *> On exit, the eigenvectors of the repaired tridiagonal matrix.
99 *> The leading dimension of the array Q. LDQ >= max(1,N).
102 *> \param[in,out] INDXQ
104 *> INDXQ is INTEGER array, dimension (N)
105 *> On entry, the permutation which separately sorts the two
106 *> subproblems in D into ascending order.
107 *> On exit, the permutation which will reintegrate the
108 *> subproblems back into sorted order,
109 *> i.e. D( INDXQ( I = 1, N ) ) will be in ascending order.
114 *> RHO is DOUBLE PRECISION
115 *> The subdiagonal entry used to create the rank-1 modification.
121 *> The location of the last eigenvalue in the leading sub-matrix.
122 *> min(1,N) <= CUTPNT <= N/2.
127 *> WORK is DOUBLE PRECISION array, dimension (4*N + N**2)
132 *> IWORK is INTEGER array, dimension (4*N)
138 *> = 0: successful exit.
139 *> < 0: if INFO = -i, the i-th argument had an illegal value.
140 *> > 0: if INFO = 1, an eigenvalue did not converge
146 *> \author Univ. of Tennessee
147 *> \author Univ. of California Berkeley
148 *> \author Univ. of Colorado Denver
153 *> \ingroup auxOTHERcomputational
155 *> \par Contributors:
158 *> Jeff Rutter, Computer Science Division, University of California
159 *> at Berkeley, USA \n
160 *> Modified by Francoise Tisseur, University of Tennessee
162 * =====================================================================
163 SUBROUTINE DLAED1( N, D, Q, LDQ, INDXQ, RHO, CUTPNT, WORK, IWORK,
166 * -- LAPACK computational routine (version 3.6.1) --
167 * -- LAPACK is a software package provided by Univ. of Tennessee, --
168 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
171 * .. Scalar Arguments ..
172 INTEGER CUTPNT, INFO, LDQ, N
175 * .. Array Arguments ..
176 INTEGER INDXQ( * ), IWORK( * )
177 DOUBLE PRECISION D( * ), Q( LDQ, * ), WORK( * )
180 * =====================================================================
182 * .. Local Scalars ..
183 INTEGER COLTYP, I, IDLMDA, INDX, INDXC, INDXP, IQ2, IS,
184 $ IW, IZ, K, N1, N2, ZPP1
186 * .. External Subroutines ..
187 EXTERNAL DCOPY, DLAED2, DLAED3, DLAMRG, XERBLA
189 * .. Intrinsic Functions ..
192 * .. Executable Statements ..
194 * Test the input parameters.
200 ELSE IF( LDQ.LT.MAX( 1, N ) ) THEN
202 ELSE IF( MIN( 1, N / 2 ).GT.CUTPNT .OR. ( N / 2 ).LT.CUTPNT ) THEN
206 CALL XERBLA( 'DLAED1', -INFO )
210 * Quick return if possible
215 * The following values are integer pointers which indicate
216 * the portion of the workspace
217 * used by a particular array in DLAED2 and DLAED3.
230 * Form the z-vector which consists of the last row of Q_1 and the
233 CALL DCOPY( CUTPNT, Q( CUTPNT, 1 ), LDQ, WORK( IZ ), 1 )
235 CALL DCOPY( N-CUTPNT, Q( ZPP1, ZPP1 ), LDQ, WORK( IZ+CUTPNT ), 1 )
237 * Deflate eigenvalues.
239 CALL DLAED2( K, N, CUTPNT, D, Q, LDQ, INDXQ, RHO, WORK( IZ ),
240 $ WORK( IDLMDA ), WORK( IW ), WORK( IQ2 ),
241 $ IWORK( INDX ), IWORK( INDXC ), IWORK( INDXP ),
242 $ IWORK( COLTYP ), INFO )
247 * Solve Secular Equation.
250 IS = ( IWORK( COLTYP )+IWORK( COLTYP+1 ) )*CUTPNT +
251 $ ( IWORK( COLTYP+1 )+IWORK( COLTYP+2 ) )*( N-CUTPNT ) + IQ2
252 CALL DLAED3( K, N, CUTPNT, D, Q, LDQ, RHO, WORK( IDLMDA ),
253 $ WORK( IQ2 ), IWORK( INDXC ), IWORK( COLTYP ),
254 $ WORK( IW ), WORK( IS ), INFO )
258 * Prepare the INDXQ sorting permutation.
262 CALL DLAMRG( N1, N2, D, 1, -1, INDXQ )