3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DHSEQR + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dhseqr.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dhseqr.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dhseqr.f">
21 * SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
22 * LDZ, WORK, LWORK, INFO )
24 * .. Scalar Arguments ..
25 * INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N
26 * CHARACTER COMPZ, JOB
28 * .. Array Arguments ..
29 * DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ),
39 *> DHSEQR computes the eigenvalues of a Hessenberg matrix H
40 *> and, optionally, the matrices T and Z from the Schur decomposition
41 *> H = Z T Z**T, where T is an upper quasi-triangular matrix (the
42 *> Schur form), and Z is the orthogonal matrix of Schur vectors.
44 *> Optionally Z may be postmultiplied into an input orthogonal
45 *> matrix Q so that this routine can give the Schur factorization
46 *> of a matrix A which has been reduced to the Hessenberg form H
47 *> by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T.
56 *> = 'E': compute eigenvalues only;
57 *> = 'S': compute eigenvalues and the Schur form T.
62 *> COMPZ is CHARACTER*1
63 *> = 'N': no Schur vectors are computed;
64 *> = 'I': Z is initialized to the unit matrix and the matrix Z
65 *> of Schur vectors of H is returned;
66 *> = 'V': Z must contain an orthogonal matrix Q on entry, and
67 *> the product Q*Z is returned.
73 *> The order of the matrix H. N .GE. 0.
85 *> It is assumed that H is already upper triangular in rows
86 *> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
87 *> set by a previous call to DGEBAL, and then passed to ZGEHRD
88 *> when the matrix output by DGEBAL is reduced to Hessenberg
89 *> form. Otherwise ILO and IHI should be set to 1 and N
90 *> respectively. If N.GT.0, then 1.LE.ILO.LE.IHI.LE.N.
91 *> If N = 0, then ILO = 1 and IHI = 0.
96 *> H is DOUBLE PRECISION array, dimension (LDH,N)
97 *> On entry, the upper Hessenberg matrix H.
98 *> On exit, if INFO = 0 and JOB = 'S', then H contains the
99 *> upper quasi-triangular matrix T from the Schur decomposition
100 *> (the Schur form); 2-by-2 diagonal blocks (corresponding to
101 *> complex conjugate pairs of eigenvalues) are returned in
102 *> standard form, with H(i,i) = H(i+1,i+1) and
103 *> H(i+1,i)*H(i,i+1).LT.0. If INFO = 0 and JOB = 'E', the
104 *> contents of H are unspecified on exit. (The output value of
105 *> H when INFO.GT.0 is given under the description of INFO
108 *> Unlike earlier versions of DHSEQR, this subroutine may
109 *> explicitly H(i,j) = 0 for i.GT.j and j = 1, 2, ... ILO-1
110 *> or j = IHI+1, IHI+2, ... N.
116 *> The leading dimension of the array H. LDH .GE. max(1,N).
121 *> WR is DOUBLE PRECISION array, dimension (N)
126 *> WI is DOUBLE PRECISION array, dimension (N)
128 *> The real and imaginary parts, respectively, of the computed
129 *> eigenvalues. If two eigenvalues are computed as a complex
130 *> conjugate pair, they are stored in consecutive elements of
131 *> WR and WI, say the i-th and (i+1)th, with WI(i) .GT. 0 and
132 *> WI(i+1) .LT. 0. If JOB = 'S', the eigenvalues are stored in
133 *> the same order as on the diagonal of the Schur form returned
134 *> in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
135 *> diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
141 *> Z is DOUBLE PRECISION array, dimension (LDZ,N)
142 *> If COMPZ = 'N', Z is not referenced.
143 *> If COMPZ = 'I', on entry Z need not be set and on exit,
144 *> if INFO = 0, Z contains the orthogonal matrix Z of the Schur
145 *> vectors of H. If COMPZ = 'V', on entry Z must contain an
146 *> N-by-N matrix Q, which is assumed to be equal to the unit
147 *> matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
148 *> if INFO = 0, Z contains Q*Z.
149 *> Normally Q is the orthogonal matrix generated by DORGHR
150 *> after the call to DGEHRD which formed the Hessenberg matrix
151 *> H. (The output value of Z when INFO.GT.0 is given under
152 *> the description of INFO below.)
158 *> The leading dimension of the array Z. if COMPZ = 'I' or
159 *> COMPZ = 'V', then LDZ.GE.MAX(1,N). Otherwize, LDZ.GE.1.
164 *> WORK is DOUBLE PRECISION array, dimension (LWORK)
165 *> On exit, if INFO = 0, WORK(1) returns an estimate of
166 *> the optimal value for LWORK.
172 *> The dimension of the array WORK. LWORK .GE. max(1,N)
173 *> is sufficient and delivers very good and sometimes
174 *> optimal performance. However, LWORK as large as 11*N
175 *> may be required for optimal performance. A workspace
176 *> query is recommended to determine the optimal workspace
179 *> If LWORK = -1, then DHSEQR does a workspace query.
180 *> In this case, DHSEQR checks the input parameters and
181 *> estimates the optimal workspace size for the given
182 *> values of N, ILO and IHI. The estimate is returned
183 *> in WORK(1). No error message related to LWORK is
184 *> issued by XERBLA. Neither H nor Z are accessed.
190 *> = 0: successful exit
191 *> .LT. 0: if INFO = -i, the i-th argument had an illegal
193 *> .GT. 0: if INFO = i, DHSEQR failed to compute all of
194 *> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR
195 *> and WI contain those eigenvalues which have been
196 *> successfully computed. (Failures are rare.)
198 *> If INFO .GT. 0 and JOB = 'E', then on exit, the
199 *> remaining unconverged eigenvalues are the eigen-
200 *> values of the upper Hessenberg matrix rows and
201 *> columns ILO through INFO of the final, output
204 *> If INFO .GT. 0 and JOB = 'S', then on exit
206 *> (*) (initial value of H)*U = U*(final value of H)
208 *> where U is an orthogonal matrix. The final
209 *> value of H is upper Hessenberg and quasi-triangular
210 *> in rows and columns INFO+1 through IHI.
212 *> If INFO .GT. 0 and COMPZ = 'V', then on exit
214 *> (final value of Z) = (initial value of Z)*U
216 *> where U is the orthogonal matrix in (*) (regard-
217 *> less of the value of JOB.)
219 *> If INFO .GT. 0 and COMPZ = 'I', then on exit
220 *> (final value of Z) = U
221 *> where U is the orthogonal matrix in (*) (regard-
222 *> less of the value of JOB.)
224 *> If INFO .GT. 0 and COMPZ = 'N', then Z is not
231 *> \author Univ. of Tennessee
232 *> \author Univ. of California Berkeley
233 *> \author Univ. of Colorado Denver
236 *> \date November 2011
238 *> \ingroup doubleOTHERcomputational
240 *> \par Contributors:
243 *> Karen Braman and Ralph Byers, Department of Mathematics,
244 *> University of Kansas, USA
246 *> \par Further Details:
247 * =====================
251 *> Default values supplied by
252 *> ILAENV(ISPEC,'DHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
253 *> It is suggested that these defaults be adjusted in order
254 *> to attain best performance in each particular
255 *> computational environment.
257 *> ISPEC=12: The DLAHQR vs DLAQR0 crossover point.
258 *> Default: 75. (Must be at least 11.)
260 *> ISPEC=13: Recommended deflation window size.
261 *> This depends on ILO, IHI and NS. NS is the
262 *> number of simultaneous shifts returned
263 *> by ILAENV(ISPEC=15). (See ISPEC=15 below.)
264 *> The default for (IHI-ILO+1).LE.500 is NS.
265 *> The default for (IHI-ILO+1).GT.500 is 3*NS/2.
267 *> ISPEC=14: Nibble crossover point. (See IPARMQ for
268 *> details.) Default: 14% of deflation window
271 *> ISPEC=15: Number of simultaneous shifts in a multishift
274 *> If IHI-ILO+1 is ...
276 *> greater than ...but less ... the
277 *> or equal to ... than default is
284 *> 3000 6000 NS = 128
285 *> 6000 infinity NS = 256
287 *> (+) By default some or all matrices of this order
288 *> are passed to the implicit double shift routine
289 *> DLAHQR and this parameter is ignored. See
290 *> ISPEC=12 above and comments in IPARMQ for
293 *> (**) The asterisks (**) indicate an ad-hoc
294 *> function of N increasing from 10 to 64.
296 *> ISPEC=16: Select structured matrix multiply.
297 *> If the number of simultaneous shifts (specified
298 *> by ISPEC=15) is less than 14, then the default
299 *> for ISPEC=16 is 0. Otherwise the default for
306 *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
307 *> Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
308 *> Performance, SIAM Journal of Matrix Analysis, volume 23, pages
311 *> K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
312 *> Algorithm Part II: Aggressive Early Deflation, SIAM Journal
313 *> of Matrix Analysis, volume 23, pages 948--973, 2002.
315 * =====================================================================
316 SUBROUTINE DHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
317 $ LDZ, WORK, LWORK, INFO )
319 * -- LAPACK computational routine (version 3.4.0) --
320 * -- LAPACK is a software package provided by Univ. of Tennessee, --
321 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
324 * .. Scalar Arguments ..
325 INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N
328 * .. Array Arguments ..
329 DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ),
333 * =====================================================================
337 * ==== Matrices of order NTINY or smaller must be processed by
338 * . DLAHQR because of insufficient subdiagonal scratch space.
339 * . (This is a hard limit.) ====
341 PARAMETER ( NTINY = 11 )
343 * ==== NL allocates some local workspace to help small matrices
344 * . through a rare DLAHQR failure. NL .GT. NTINY = 11 is
345 * . required and NL .LE. NMIN = ILAENV(ISPEC=12,...) is recom-
346 * . mended. (The default value of NMIN is 75.) Using NL = 49
347 * . allows up to six simultaneous shifts and a 16-by-16
348 * . deflation window. ====
350 PARAMETER ( NL = 49 )
351 DOUBLE PRECISION ZERO, ONE
352 PARAMETER ( ZERO = 0.0d0, ONE = 1.0d0 )
355 DOUBLE PRECISION HL( NL, NL ), WORKL( NL )
357 * .. Local Scalars ..
358 INTEGER I, KBOT, NMIN
359 LOGICAL INITZ, LQUERY, WANTT, WANTZ
361 * .. External Functions ..
364 EXTERNAL ILAENV, LSAME
366 * .. External Subroutines ..
367 EXTERNAL DLACPY, DLAHQR, DLAQR0, DLASET, XERBLA
369 * .. Intrinsic Functions ..
370 INTRINSIC DBLE, MAX, MIN
372 * .. Executable Statements ..
374 * ==== Decode and check the input parameters. ====
376 WANTT = LSAME( JOB, 'S' )
377 INITZ = LSAME( COMPZ, 'I' )
378 WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
379 WORK( 1 ) = DBLE( MAX( 1, N ) )
383 IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
385 ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
387 ELSE IF( N.LT.0 ) THEN
389 ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
391 ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
393 ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
395 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
397 ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
403 * ==== Quick return in case of invalid argument. ====
405 CALL XERBLA( 'DHSEQR', -INFO )
408 ELSE IF( N.EQ.0 ) THEN
410 * ==== Quick return in case N = 0; nothing to do. ====
414 ELSE IF( LQUERY ) THEN
416 * ==== Quick return in case of a workspace query ====
418 CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
419 $ IHI, Z, LDZ, WORK, LWORK, INFO )
420 * ==== Ensure reported workspace size is backward-compatible with
421 * . previous LAPACK versions. ====
422 WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
427 * ==== copy eigenvalues isolated by DGEBAL ====
438 * ==== Initialize Z, if requested ====
441 $ CALL DLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
443 * ==== Quick return if possible ====
445 IF( ILO.EQ.IHI ) THEN
446 WR( ILO ) = H( ILO, ILO )
451 * ==== DLAHQR/DLAQR0 crossover point ====
453 NMIN = ILAENV( 12, 'DHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
455 NMIN = MAX( NTINY, NMIN )
457 * ==== DLAQR0 for big matrices; DLAHQR for small ones ====
460 CALL DLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
461 $ IHI, Z, LDZ, WORK, LWORK, INFO )
464 * ==== Small matrix ====
466 CALL DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
467 $ IHI, Z, LDZ, INFO )
471 * ==== A rare DLAHQR failure! DLAQR0 sometimes succeeds
472 * . when DLAHQR fails. ====
478 * ==== Larger matrices have enough subdiagonal scratch
479 * . space to call DLAQR0 directly. ====
481 CALL DLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, WR,
482 $ WI, ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
486 * ==== Tiny matrices don't have enough subdiagonal
487 * . scratch space to benefit from DLAQR0. Hence,
488 * . tiny matrices must be copied into a larger
489 * . array before calling DLAQR0. ====
491 CALL DLACPY( 'A', N, N, H, LDH, HL, NL )
493 CALL DLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
495 CALL DLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, WR,
496 $ WI, ILO, IHI, Z, LDZ, WORKL, NL, INFO )
497 IF( WANTT .OR. INFO.NE.0 )
498 $ CALL DLACPY( 'A', N, N, HL, NL, H, LDH )
503 * ==== Clear out the trash, if necessary. ====
505 IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
506 $ CALL DLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
508 * ==== Ensure reported workspace size is backward-compatible with
509 * . previous LAPACK versions. ====
511 WORK( 1 ) = MAX( DBLE( MAX( 1, N ) ), WORK( 1 ) )
514 * ==== End of DHSEQR ====