1 *> \brief \b DGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact WY representation of Q.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download DGEQRT3 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgelqt3.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgelqt3.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgelqt3.f">
21 * RECURSIVE SUBROUTINE DGELQT3( M, N, A, LDA, T, LDT, INFO )
23 * .. Scalar Arguments ..
24 * INTEGER INFO, LDA, M, N, LDT
26 * .. Array Arguments ..
27 * DOUBLE PRECISION A( LDA, * ), T( LDT, * )
36 *> DGELQT3 recursively computes a LQ factorization of a real M-by-N
37 *> matrix A, using the compact WY representation of Q.
39 *> Based on the algorithm of Elmroth and Gustavson,
40 *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
49 *> The number of rows of the matrix A. M =< N.
55 *> The number of columns of the matrix A. N >= 0.
60 *> A is DOUBLE PRECISION array, dimension (LDA,N)
61 *> On entry, the real M-by-N matrix A. On exit, the elements on and
62 *> below the diagonal contain the N-by-N lower triangular matrix L; the
63 *> elements above the diagonal are the rows of V. See below for
70 *> The leading dimension of the array A. LDA >= max(1,M).
75 *> T is DOUBLE PRECISION array, dimension (LDT,N)
76 *> The N-by-N upper triangular factor of the block reflector.
77 *> The elements on and above the diagonal contain the block
78 *> reflector T; the elements below the diagonal are not used.
79 *> See below for further details.
85 *> The leading dimension of the array T. LDT >= max(1,N).
91 *> = 0: successful exit
92 *> < 0: if INFO = -i, the i-th argument had an illegal value
98 *> \author Univ. of Tennessee
99 *> \author Univ. of California Berkeley
100 *> \author Univ. of Colorado Denver
103 *> \date September 2012
105 *> \ingroup doubleGEcomputational
107 *> \par Further Details:
108 * =====================
112 *> The matrix V stores the elementary reflectors H(i) in the i-th column
113 *> below the diagonal. For example, if M=5 and N=3, the matrix V is
115 *> V = ( 1 v1 v1 v1 v1 )
120 *> where the vi's represent the vectors which define H(i), which are returned
121 *> in the matrix A. The 1's along the diagonal of V are not stored in A. The
122 *> block reflector H is then given by
124 *> H = I - V * T * V**T
126 *> where V**T is the transpose of V.
128 *> For details of the algorithm, see Elmroth and Gustavson (cited above).
131 * =====================================================================
132 RECURSIVE SUBROUTINE DGELQT3( M, N, A, LDA, T, LDT, INFO )
134 * -- LAPACK computational routine (version 3.4.2) --
135 * -- LAPACK is a software package provided by Univ. of Tennessee, --
136 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
139 * .. Scalar Arguments ..
140 INTEGER INFO, LDA, M, N, LDT
142 * .. Array Arguments ..
143 DOUBLE PRECISION A( LDA, * ), T( LDT, * )
146 * =====================================================================
150 PARAMETER ( ONE = 1.0D+00 )
152 * .. Local Scalars ..
153 INTEGER I, I1, J, J1, M1, M2, N1, N2, IINFO
155 * .. External Subroutines ..
156 EXTERNAL DLARFG, DTRMM, DGEMM, XERBLA
158 * .. Executable Statements ..
163 ELSE IF( N .LT. M ) THEN
165 ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
167 ELSE IF( LDT .LT. MAX( 1, M ) ) THEN
171 CALL XERBLA( 'DGELQT3', -INFO )
177 * Compute Householder transform when N=1
179 CALL DLARFG( N, A, A( 1, MIN( 2, N ) ), LDA, T )
183 * Otherwise, split A into blocks...
190 * Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
192 CALL DGELQT3( M1, N, A, LDA, T, LDT, IINFO )
194 * Compute A(J1:M,1:N) = Q1^H A(J1:M,1:N) [workspace: T(1:N1,J1:N)]
198 T( I+M1, J ) = A( I+M1, J )
201 CALL DTRMM( 'R', 'U', 'T', 'U', M2, M1, ONE,
202 & A, LDA, T( I1, 1 ), LDT )
204 CALL DGEMM( 'N', 'T', M2, M1, N-M1, ONE, A( I1, I1 ), LDA,
205 & A( 1, I1 ), LDA, ONE, T( I1, 1 ), LDT)
207 CALL DTRMM( 'R', 'U', 'N', 'N', M2, M1, ONE,
208 & T, LDT, T( I1, 1 ), LDT )
210 CALL DGEMM( 'N', 'N', M2, N-M1, M1, -ONE, T( I1, 1 ), LDT,
211 & A( 1, I1 ), LDA, ONE, A( I1, I1 ), LDA )
213 CALL DTRMM( 'R', 'U', 'N', 'U', M2, M1 , ONE,
214 & A, LDA, T( I1, 1 ), LDT )
218 A( I+M1, J ) = A( I+M1, J ) - T( I+M1, J )
223 * Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
225 CALL DGELQT3( M2, N-M1, A( I1, I1 ), LDA,
226 & T( I1, I1 ), LDT, IINFO )
228 * Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2
232 T( J, I+M1 ) = (A( J, I+M1 ))
236 CALL DTRMM( 'R', 'U', 'T', 'U', M1, M2, ONE,
237 & A( I1, I1 ), LDA, T( 1, I1 ), LDT )
239 CALL DGEMM( 'N', 'T', M1, M2, N-M, ONE, A( 1, J1 ), LDA,
240 & A( I1, J1 ), LDA, ONE, T( 1, I1 ), LDT )
242 CALL DTRMM( 'L', 'U', 'N', 'N', M1, M2, -ONE, T, LDT,
245 CALL DTRMM( 'R', 'U', 'N', 'N', M1, M2, ONE,
246 & T( I1, I1 ), LDT, T( 1, I1 ), LDT )
250 * Y = (Y1,Y2); L = [ L1 0 ]; T = [T1 T3]
251 * [ A(1:N1,J1:N) L2 ] [ 0 T2]