3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download CUNBDB4 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunbdb4.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunbdb4.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunbdb4.f">
21 * SUBROUTINE CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
22 * TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
25 * .. Scalar Arguments ..
26 * INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
28 * .. Array Arguments ..
29 * REAL PHI(*), THETA(*)
30 * COMPLEX PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
31 * $ WORK(*), X11(LDX11,*), X21(LDX21,*)
40 *> CUNBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny
41 *> matrix X with orthonomal columns:
44 *> [ X11 ] [ P1 | ] [ 0 ]
45 *> [-----] = [---------] [-----] Q1**T .
46 *> [ X21 ] [ | P2 ] [ B21 ]
49 *> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P,
50 *> M-P, or Q. Routines CUNBDB1, CUNBDB2, and CUNBDB3 handle cases in
51 *> which M-Q is not the minimum dimension.
53 *> The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
54 *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
55 *> Householder vectors.
57 *> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented
58 *> implicitly by angles THETA, PHI.
68 *> The number of rows X11 plus the number of rows in X21.
74 *> The number of rows in X11. 0 <= P <= M.
80 *> The number of columns in X11 and X21. 0 <= Q <= M and
81 *> M-Q <= min(P,M-P,Q).
86 *> X11 is COMPLEX array, dimension (LDX11,Q)
87 *> On entry, the top block of the matrix X to be reduced. On
88 *> exit, the columns of tril(X11) specify reflectors for P1 and
89 *> the rows of triu(X11,1) specify reflectors for Q1.
95 *> The leading dimension of X11. LDX11 >= P.
100 *> X21 is COMPLEX array, dimension (LDX21,Q)
101 *> On entry, the bottom block of the matrix X to be reduced. On
102 *> exit, the columns of tril(X21) specify reflectors for P2.
108 *> The leading dimension of X21. LDX21 >= M-P.
113 *> THETA is REAL array, dimension (Q)
114 *> The entries of the bidiagonal blocks B11, B21 are defined by
115 *> THETA and PHI. See Further Details.
120 *> PHI is REAL array, dimension (Q-1)
121 *> The entries of the bidiagonal blocks B11, B21 are defined by
122 *> THETA and PHI. See Further Details.
127 *> TAUP1 is COMPLEX array, dimension (P)
128 *> The scalar factors of the elementary reflectors that define
134 *> TAUP2 is COMPLEX array, dimension (M-P)
135 *> The scalar factors of the elementary reflectors that define
141 *> TAUQ1 is COMPLEX array, dimension (Q)
142 *> The scalar factors of the elementary reflectors that define
146 *> \param[out] PHANTOM
148 *> PHANTOM is COMPLEX array, dimension (M)
149 *> The routine computes an M-by-1 column vector Y that is
150 *> orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and
151 *> PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and
152 *> Y(P+1:M), respectively.
157 *> WORK is COMPLEX array, dimension (LWORK)
163 *> The dimension of the array WORK. LWORK >= M-Q.
165 *> If LWORK = -1, then a workspace query is assumed; the routine
166 *> only calculates the optimal size of the WORK array, returns
167 *> this value as the first entry of the WORK array, and no error
168 *> message related to LWORK is issued by XERBLA.
174 *> = 0: successful exit.
175 *> < 0: if INFO = -i, the i-th argument had an illegal value.
181 *> \author Univ. of Tennessee
182 *> \author Univ. of California Berkeley
183 *> \author Univ. of Colorado Denver
188 *> \ingroup complexOTHERcomputational
190 *> \par Further Details:
191 * =====================
195 *> The upper-bidiagonal blocks B11, B21 are represented implicitly by
196 *> angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
197 *> in each bidiagonal band is a product of a sine or cosine of a THETA
198 *> with a sine or cosine of a PHI. See [1] or CUNCSD for details.
200 *> P1, P2, and Q1 are represented as products of elementary reflectors.
201 *> See CUNCSD2BY1 for details on generating P1, P2, and Q1 using CUNGQR
208 *> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
209 *> Algorithms, 50(1):33-65, 2009.
211 * =====================================================================
212 SUBROUTINE CUNBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
213 $ TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
216 * -- LAPACK computational routine (version 3.6.1) --
217 * -- LAPACK is a software package provided by Univ. of Tennessee, --
218 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
221 * .. Scalar Arguments ..
222 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
224 * .. Array Arguments ..
225 REAL PHI(*), THETA(*)
226 COMPLEX PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
227 $ WORK(*), X11(LDX11,*), X21(LDX21,*)
230 * ====================================================================
233 COMPLEX NEGONE, ONE, ZERO
234 PARAMETER ( NEGONE = (-1.0E0,0.0E0), ONE = (1.0E0,0.0E0),
235 $ ZERO = (0.0E0,0.0E0) )
237 * .. Local Scalars ..
239 INTEGER CHILDINFO, I, ILARF, IORBDB5, J, LLARF,
240 $ LORBDB5, LWORKMIN, LWORKOPT
243 * .. External Subroutines ..
244 EXTERNAL CLARF, CLARFGP, CUNBDB5, CSROT, CSCAL, XERBLA
246 * .. External Functions ..
250 * .. Intrinsic Function ..
251 INTRINSIC ATAN2, COS, MAX, SIN, SQRT
253 * .. Executable Statements ..
255 * Test input arguments
258 LQUERY = LWORK .EQ. -1
262 ELSE IF( P .LT. M-Q .OR. M-P .LT. M-Q ) THEN
264 ELSE IF( Q .LT. M-Q .OR. Q .GT. M ) THEN
266 ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
268 ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
274 IF( INFO .EQ. 0 ) THEN
276 LLARF = MAX( Q-1, P-1, M-P-1 )
279 LWORKOPT = ILARF + LLARF - 1
280 LWORKOPT = MAX( LWORKOPT, IORBDB5 + LORBDB5 - 1 )
283 IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
287 IF( INFO .NE. 0 ) THEN
288 CALL XERBLA( 'CUNBDB4', -INFO )
290 ELSE IF( LQUERY ) THEN
294 * Reduce columns 1, ..., M-Q of X11 and X21
302 CALL CUNBDB5( P, M-P, Q, PHANTOM(1), 1, PHANTOM(P+1), 1,
303 $ X11, LDX11, X21, LDX21, WORK(IORBDB5),
304 $ LORBDB5, CHILDINFO )
305 CALL CSCAL( P, NEGONE, PHANTOM(1), 1 )
306 CALL CLARFGP( P, PHANTOM(1), PHANTOM(2), 1, TAUP1(1) )
307 CALL CLARFGP( M-P, PHANTOM(P+1), PHANTOM(P+2), 1, TAUP2(1) )
308 THETA(I) = ATAN2( REAL( PHANTOM(1) ), REAL( PHANTOM(P+1) ) )
313 CALL CLARF( 'L', P, Q, PHANTOM(1), 1, CONJG(TAUP1(1)), X11,
314 $ LDX11, WORK(ILARF) )
315 CALL CLARF( 'L', M-P, Q, PHANTOM(P+1), 1, CONJG(TAUP2(1)),
316 $ X21, LDX21, WORK(ILARF) )
318 CALL CUNBDB5( P-I+1, M-P-I+1, Q-I+1, X11(I,I-1), 1,
319 $ X21(I,I-1), 1, X11(I,I), LDX11, X21(I,I),
320 $ LDX21, WORK(IORBDB5), LORBDB5, CHILDINFO )
321 CALL CSCAL( P-I+1, NEGONE, X11(I,I-1), 1 )
322 CALL CLARFGP( P-I+1, X11(I,I-1), X11(I+1,I-1), 1, TAUP1(I) )
323 CALL CLARFGP( M-P-I+1, X21(I,I-1), X21(I+1,I-1), 1,
325 THETA(I) = ATAN2( REAL( X11(I,I-1) ), REAL( X21(I,I-1) ) )
330 CALL CLARF( 'L', P-I+1, Q-I+1, X11(I,I-1), 1,
331 $ CONJG(TAUP1(I)), X11(I,I), LDX11, WORK(ILARF) )
332 CALL CLARF( 'L', M-P-I+1, Q-I+1, X21(I,I-1), 1,
333 $ CONJG(TAUP2(I)), X21(I,I), LDX21, WORK(ILARF) )
336 CALL CSROT( Q-I+1, X11(I,I), LDX11, X21(I,I), LDX21, S, -C )
337 CALL CLACGV( Q-I+1, X21(I,I), LDX21 )
338 CALL CLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) )
341 CALL CLARF( 'R', P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
342 $ X11(I+1,I), LDX11, WORK(ILARF) )
343 CALL CLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
344 $ X21(I+1,I), LDX21, WORK(ILARF) )
345 CALL CLACGV( Q-I+1, X21(I,I), LDX21 )
346 IF( I .LT. M-Q ) THEN
347 S = SQRT( SCNRM2( P-I, X11(I+1,I), 1 )**2
348 $ + SCNRM2( M-P-I, X21(I+1,I), 1 )**2 )
349 PHI(I) = ATAN2( S, C )
354 * Reduce the bottom-right portion of X11 to [ I 0 ]
357 CALL CLACGV( Q-I+1, X11(I,I), LDX11 )
358 CALL CLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) )
360 CALL CLARF( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
361 $ X11(I+1,I), LDX11, WORK(ILARF) )
362 CALL CLARF( 'R', Q-P, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
363 $ X21(M-Q+1,I), LDX21, WORK(ILARF) )
364 CALL CLACGV( Q-I+1, X11(I,I), LDX11 )
367 * Reduce the bottom-right portion of X21 to [ 0 I ]
370 CALL CLACGV( Q-I+1, X21(M-Q+I-P,I), LDX21 )
371 CALL CLARFGP( Q-I+1, X21(M-Q+I-P,I), X21(M-Q+I-P,I+1), LDX21,
374 CALL CLARF( 'R', Q-I, Q-I+1, X21(M-Q+I-P,I), LDX21, TAUQ1(I),
375 $ X21(M-Q+I-P+1,I), LDX21, WORK(ILARF) )
376 CALL CLACGV( Q-I+1, X21(M-Q+I-P,I), LDX21 )