3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download CTPCON + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctpcon.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctpcon.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctpcon.f">
21 * SUBROUTINE CTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK,
24 * .. Scalar Arguments ..
25 * CHARACTER DIAG, NORM, UPLO
29 * .. Array Arguments ..
31 * COMPLEX AP( * ), WORK( * )
40 *> CTPCON estimates the reciprocal of the condition number of a packed
41 *> triangular matrix A, in either the 1-norm or the infinity-norm.
43 *> The norm of A is computed and an estimate is obtained for
44 *> norm(inv(A)), then the reciprocal of the condition number is
46 *> RCOND = 1 / ( norm(A) * norm(inv(A)) ).
54 *> NORM is CHARACTER*1
55 *> Specifies whether the 1-norm condition number or the
56 *> infinity-norm condition number is required:
57 *> = '1' or 'O': 1-norm;
58 *> = 'I': Infinity-norm.
63 *> UPLO is CHARACTER*1
64 *> = 'U': A is upper triangular;
65 *> = 'L': A is lower triangular.
70 *> DIAG is CHARACTER*1
71 *> = 'N': A is non-unit triangular;
72 *> = 'U': A is unit triangular.
78 *> The order of the matrix A. N >= 0.
83 *> AP is COMPLEX array, dimension (N*(N+1)/2)
84 *> The upper or lower triangular matrix A, packed columnwise in
85 *> a linear array. The j-th column of A is stored in the array
87 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
88 *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
89 *> If DIAG = 'U', the diagonal elements of A are not referenced
90 *> and are assumed to be 1.
96 *> The reciprocal of the condition number of the matrix A,
97 *> computed as RCOND = 1/(norm(A) * norm(inv(A))).
102 *> WORK is COMPLEX array, dimension (2*N)
107 *> RWORK is REAL array, dimension (N)
113 *> = 0: successful exit
114 *> < 0: if INFO = -i, the i-th argument had an illegal value
120 *> \author Univ. of Tennessee
121 *> \author Univ. of California Berkeley
122 *> \author Univ. of Colorado Denver
125 *> \date November 2011
127 *> \ingroup complexOTHERcomputational
129 * =====================================================================
130 SUBROUTINE CTPCON( NORM, UPLO, DIAG, N, AP, RCOND, WORK, RWORK,
133 * -- LAPACK computational routine (version 3.4.0) --
134 * -- LAPACK is a software package provided by Univ. of Tennessee, --
135 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
138 * .. Scalar Arguments ..
139 CHARACTER DIAG, NORM, UPLO
143 * .. Array Arguments ..
145 COMPLEX AP( * ), WORK( * )
148 * =====================================================================
152 PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
154 * .. Local Scalars ..
155 LOGICAL NOUNIT, ONENRM, UPPER
157 INTEGER IX, KASE, KASE1
158 REAL AINVNM, ANORM, SCALE, SMLNUM, XNORM
164 * .. External Functions ..
168 EXTERNAL LSAME, ICAMAX, CLANTP, SLAMCH
170 * .. External Subroutines ..
171 EXTERNAL CLACN2, CLATPS, CSRSCL, XERBLA
173 * .. Intrinsic Functions ..
174 INTRINSIC ABS, AIMAG, MAX, REAL
176 * .. Statement Functions ..
179 * .. Statement Function definitions ..
180 CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
182 * .. Executable Statements ..
184 * Test the input parameters.
187 UPPER = LSAME( UPLO, 'U' )
188 ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
189 NOUNIT = LSAME( DIAG, 'N' )
191 IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
193 ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
195 ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
197 ELSE IF( N.LT.0 ) THEN
201 CALL XERBLA( 'CTPCON', -INFO )
205 * Quick return if possible
213 SMLNUM = SLAMCH( 'Safe minimum' )*REAL( MAX( 1, N ) )
215 * Compute the norm of the triangular matrix A.
217 ANORM = CLANTP( NORM, UPLO, DIAG, N, AP, RWORK )
219 * Continue only if ANORM > 0.
221 IF( ANORM.GT.ZERO ) THEN
223 * Estimate the norm of the inverse of A.
234 CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
236 IF( KASE.EQ.KASE1 ) THEN
238 * Multiply by inv(A).
240 CALL CLATPS( UPLO, 'No transpose', DIAG, NORMIN, N, AP,
241 $ WORK, SCALE, RWORK, INFO )
244 * Multiply by inv(A**H).
246 CALL CLATPS( UPLO, 'Conjugate transpose', DIAG, NORMIN,
247 $ N, AP, WORK, SCALE, RWORK, INFO )
251 * Multiply by 1/SCALE if doing so will not cause overflow.
253 IF( SCALE.NE.ONE ) THEN
254 IX = ICAMAX( N, WORK, 1 )
255 XNORM = CABS1( WORK( IX ) )
256 IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
258 CALL CSRSCL( N, SCALE, WORK, 1 )
263 * Compute the estimate of the reciprocal condition number.
266 $ RCOND = ( ONE / ANORM ) / AINVNM