1 *> \brief \b CLARFT forms the triangular factor T of a block reflector H = I - vtvH
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download CLARFT + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarft.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarft.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarft.f">
21 * SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
23 * .. Scalar Arguments ..
24 * CHARACTER DIRECT, STOREV
25 * INTEGER K, LDT, LDV, N
27 * .. Array Arguments ..
28 * COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
37 *> CLARFT forms the triangular factor T of a complex block reflector H
38 *> of order n, which is defined as a product of k elementary reflectors.
40 *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
42 *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
44 *> If STOREV = 'C', the vector which defines the elementary reflector
45 *> H(i) is stored in the i-th column of the array V, and
47 *> H = I - V * T * V**H
49 *> If STOREV = 'R', the vector which defines the elementary reflector
50 *> H(i) is stored in the i-th row of the array V, and
52 *> H = I - V**H * T * V
60 *> DIRECT is CHARACTER*1
61 *> Specifies the order in which the elementary reflectors are
62 *> multiplied to form the block reflector:
63 *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
64 *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
69 *> STOREV is CHARACTER*1
70 *> Specifies how the vectors which define the elementary
71 *> reflectors are stored (see also Further Details):
79 *> The order of the block reflector H. N >= 0.
85 *> The order of the triangular factor T (= the number of
86 *> elementary reflectors). K >= 1.
91 *> V is COMPLEX array, dimension
92 *> (LDV,K) if STOREV = 'C'
93 *> (LDV,N) if STOREV = 'R'
94 *> The matrix V. See further details.
100 *> The leading dimension of the array V.
101 *> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
106 *> TAU is COMPLEX array, dimension (K)
107 *> TAU(i) must contain the scalar factor of the elementary
113 *> T is COMPLEX array, dimension (LDT,K)
114 *> The k by k triangular factor T of the block reflector.
115 *> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
116 *> lower triangular. The rest of the array is not used.
122 *> The leading dimension of the array T. LDT >= K.
128 *> \author Univ. of Tennessee
129 *> \author Univ. of California Berkeley
130 *> \author Univ. of Colorado Denver
133 *> \date September 2012
135 *> \ingroup complexOTHERauxiliary
137 *> \par Further Details:
138 * =====================
142 *> The shape of the matrix V and the storage of the vectors which define
143 *> the H(i) is best illustrated by the following example with n = 5 and
144 *> k = 3. The elements equal to 1 are not stored.
146 *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
148 *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
149 *> ( v1 1 ) ( 1 v2 v2 v2 )
150 *> ( v1 v2 1 ) ( 1 v3 v3 )
154 *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
156 *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
157 *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
158 *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
163 * =====================================================================
164 SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
166 * -- LAPACK auxiliary routine (version 3.4.2) --
167 * -- LAPACK is a software package provided by Univ. of Tennessee, --
168 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
171 * .. Scalar Arguments ..
172 CHARACTER DIRECT, STOREV
173 INTEGER K, LDT, LDV, N
175 * .. Array Arguments ..
176 COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
179 * =====================================================================
183 PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
184 $ ZERO = ( 0.0E+0, 0.0E+0 ) )
186 * .. Local Scalars ..
187 INTEGER I, J, PREVLASTV, LASTV
189 * .. External Subroutines ..
190 EXTERNAL CGEMV, CTRMV
192 * .. External Functions ..
196 * .. Executable Statements ..
198 * Quick return if possible
203 IF( LSAME( DIRECT, 'F' ) ) THEN
206 PREVLASTV = MAX( PREVLASTV, I )
207 IF( TAU( I ).EQ.ZERO ) THEN
218 IF( LSAME( STOREV, 'C' ) ) THEN
219 * Skip any trailing zeros.
220 DO LASTV = N, I+1, -1
221 IF( V( LASTV, I ).NE.ZERO ) EXIT
224 T( J, I ) = -TAU( I ) * CONJG( V( I , J ) )
226 J = MIN( LASTV, PREVLASTV )
228 * T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i)
230 CALL CGEMV( 'Conjugate transpose', J-I, I-1,
231 $ -TAU( I ), V( I+1, 1 ), LDV,
233 $ ONE, T( 1, I ), 1 )
235 * Skip any trailing zeros.
236 DO LASTV = N, I+1, -1
237 IF( V( I, LASTV ).NE.ZERO ) EXIT
240 T( J, I ) = -TAU( I ) * V( J , I )
242 J = MIN( LASTV, PREVLASTV )
244 * T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H
246 CALL CGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ),
247 $ V( 1, I+1 ), LDV, V( I, I+1 ), LDV,
248 $ ONE, T( 1, I ), LDT )
251 * T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
253 CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
254 $ LDT, T( 1, I ), 1 )
257 PREVLASTV = MAX( PREVLASTV, LASTV )
266 IF( TAU( I ).EQ.ZERO ) THEN
278 IF( LSAME( STOREV, 'C' ) ) THEN
279 * Skip any leading zeros.
281 IF( V( LASTV, I ).NE.ZERO ) EXIT
284 T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) )
286 J = MAX( LASTV, PREVLASTV )
288 * T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i)
290 CALL CGEMV( 'Conjugate transpose', N-K+I-J, K-I,
291 $ -TAU( I ), V( J, I+1 ), LDV, V( J, I ),
292 $ 1, ONE, T( I+1, I ), 1 )
294 * Skip any leading zeros.
296 IF( V( I, LASTV ).NE.ZERO ) EXIT
299 T( J, I ) = -TAU( I ) * V( J, N-K+I )
301 J = MAX( LASTV, PREVLASTV )
303 * T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H
305 CALL CGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ),
306 $ V( I+1, J ), LDV, V( I, J ), LDV,
307 $ ONE, T( I+1, I ), LDT )
310 * T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
312 CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
313 $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
315 PREVLASTV = MIN( PREVLASTV, LASTV )