3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download CHPGV + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chpgv.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chpgv.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chpgv.f">
21 * SUBROUTINE CHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
24 * .. Scalar Arguments ..
25 * CHARACTER JOBZ, UPLO
26 * INTEGER INFO, ITYPE, LDZ, N
28 * .. Array Arguments ..
29 * REAL RWORK( * ), W( * )
30 * COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
39 *> CHPGV computes all the eigenvalues and, optionally, the eigenvectors
40 *> of a complex generalized Hermitian-definite eigenproblem, of the form
41 *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
42 *> Here A and B are assumed to be Hermitian, stored in packed format,
43 *> and B is also positive definite.
52 *> Specifies the problem type to be solved:
53 *> = 1: A*x = (lambda)*B*x
54 *> = 2: A*B*x = (lambda)*x
55 *> = 3: B*A*x = (lambda)*x
60 *> JOBZ is CHARACTER*1
61 *> = 'N': Compute eigenvalues only;
62 *> = 'V': Compute eigenvalues and eigenvectors.
67 *> UPLO is CHARACTER*1
68 *> = 'U': Upper triangles of A and B are stored;
69 *> = 'L': Lower triangles of A and B are stored.
75 *> The order of the matrices A and B. N >= 0.
80 *> AP is COMPLEX array, dimension (N*(N+1)/2)
81 *> On entry, the upper or lower triangle of the Hermitian matrix
82 *> A, packed columnwise in a linear array. The j-th column of A
83 *> is stored in the array AP as follows:
84 *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
85 *> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
87 *> On exit, the contents of AP are destroyed.
92 *> BP is COMPLEX array, dimension (N*(N+1)/2)
93 *> On entry, the upper or lower triangle of the Hermitian matrix
94 *> B, packed columnwise in a linear array. The j-th column of B
95 *> is stored in the array BP as follows:
96 *> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
97 *> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
99 *> On exit, the triangular factor U or L from the Cholesky
100 *> factorization B = U**H*U or B = L*L**H, in the same storage
106 *> W is REAL array, dimension (N)
107 *> If INFO = 0, the eigenvalues in ascending order.
112 *> Z is COMPLEX array, dimension (LDZ, N)
113 *> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
114 *> eigenvectors. The eigenvectors are normalized as follows:
115 *> if ITYPE = 1 or 2, Z**H*B*Z = I;
116 *> if ITYPE = 3, Z**H*inv(B)*Z = I.
117 *> If JOBZ = 'N', then Z is not referenced.
123 *> The leading dimension of the array Z. LDZ >= 1, and if
124 *> JOBZ = 'V', LDZ >= max(1,N).
129 *> WORK is COMPLEX array, dimension (max(1, 2*N-1))
134 *> RWORK is REAL array, dimension (max(1, 3*N-2))
140 *> = 0: successful exit
141 *> < 0: if INFO = -i, the i-th argument had an illegal value
142 *> > 0: CPPTRF or CHPEV returned an error code:
143 *> <= N: if INFO = i, CHPEV failed to converge;
144 *> i off-diagonal elements of an intermediate
145 *> tridiagonal form did not convergeto zero;
146 *> > N: if INFO = N + i, for 1 <= i <= n, then the leading
147 *> minor of order i of B is not positive definite.
148 *> The factorization of B could not be completed and
149 *> no eigenvalues or eigenvectors were computed.
155 *> \author Univ. of Tennessee
156 *> \author Univ. of California Berkeley
157 *> \author Univ. of Colorado Denver
160 *> \date November 2015
162 *> \ingroup complexOTHEReigen
164 * =====================================================================
165 SUBROUTINE CHPGV( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
168 * -- LAPACK driver routine (version 3.6.0) --
169 * -- LAPACK is a software package provided by Univ. of Tennessee, --
170 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
173 * .. Scalar Arguments ..
175 INTEGER INFO, ITYPE, LDZ, N
177 * .. Array Arguments ..
178 REAL RWORK( * ), W( * )
179 COMPLEX AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
182 * =====================================================================
184 * .. Local Scalars ..
189 * .. External Functions ..
193 * .. External Subroutines ..
194 EXTERNAL CHPEV, CHPGST, CPPTRF, CTPMV, CTPSV, XERBLA
196 * .. Executable Statements ..
198 * Test the input parameters.
200 WANTZ = LSAME( JOBZ, 'V' )
201 UPPER = LSAME( UPLO, 'U' )
204 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
206 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
208 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
210 ELSE IF( N.LT.0 ) THEN
212 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
216 CALL XERBLA( 'CHPGV ', -INFO )
220 * Quick return if possible
225 * Form a Cholesky factorization of B.
227 CALL CPPTRF( UPLO, N, BP, INFO )
233 * Transform problem to standard eigenvalue problem and solve.
235 CALL CHPGST( ITYPE, UPLO, N, AP, BP, INFO )
236 CALL CHPEV( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, RWORK, INFO )
240 * Backtransform eigenvectors to the original problem.
245 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
247 * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
248 * backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
257 CALL CTPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
261 ELSE IF( ITYPE.EQ.3 ) THEN
263 * For B*A*x=(lambda)*x;
264 * backtransform eigenvectors: x = L*y or U**H*y
273 CALL CTPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),