3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download CHEGVX + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chegvx.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chegvx.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chegvx.f">
21 * SUBROUTINE CHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
22 * VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
23 * LWORK, RWORK, IWORK, IFAIL, INFO )
25 * .. Scalar Arguments ..
26 * CHARACTER JOBZ, RANGE, UPLO
27 * INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
30 * .. Array Arguments ..
31 * INTEGER IFAIL( * ), IWORK( * )
32 * REAL RWORK( * ), W( * )
33 * COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
43 *> CHEGVX computes selected eigenvalues, and optionally, eigenvectors
44 *> of a complex generalized Hermitian-definite eigenproblem, of the form
45 *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
46 *> B are assumed to be Hermitian and B is also positive definite.
47 *> Eigenvalues and eigenvectors can be selected by specifying either a
48 *> range of values or a range of indices for the desired eigenvalues.
57 *> Specifies the problem type to be solved:
58 *> = 1: A*x = (lambda)*B*x
59 *> = 2: A*B*x = (lambda)*x
60 *> = 3: B*A*x = (lambda)*x
65 *> JOBZ is CHARACTER*1
66 *> = 'N': Compute eigenvalues only;
67 *> = 'V': Compute eigenvalues and eigenvectors.
72 *> RANGE is CHARACTER*1
73 *> = 'A': all eigenvalues will be found.
74 *> = 'V': all eigenvalues in the half-open interval (VL,VU]
76 *> = 'I': the IL-th through IU-th eigenvalues will be found.
81 *> UPLO is CHARACTER*1
82 *> = 'U': Upper triangles of A and B are stored;
83 *> = 'L': Lower triangles of A and B are stored.
89 *> The order of the matrices A and B. N >= 0.
94 *> A is COMPLEX array, dimension (LDA, N)
95 *> On entry, the Hermitian matrix A. If UPLO = 'U', the
96 *> leading N-by-N upper triangular part of A contains the
97 *> upper triangular part of the matrix A. If UPLO = 'L',
98 *> the leading N-by-N lower triangular part of A contains
99 *> the lower triangular part of the matrix A.
101 *> On exit, the lower triangle (if UPLO='L') or the upper
102 *> triangle (if UPLO='U') of A, including the diagonal, is
109 *> The leading dimension of the array A. LDA >= max(1,N).
114 *> B is COMPLEX array, dimension (LDB, N)
115 *> On entry, the Hermitian matrix B. If UPLO = 'U', the
116 *> leading N-by-N upper triangular part of B contains the
117 *> upper triangular part of the matrix B. If UPLO = 'L',
118 *> the leading N-by-N lower triangular part of B contains
119 *> the lower triangular part of the matrix B.
121 *> On exit, if INFO <= N, the part of B containing the matrix is
122 *> overwritten by the triangular factor U or L from the Cholesky
123 *> factorization B = U**H*U or B = L*L**H.
129 *> The leading dimension of the array B. LDB >= max(1,N).
136 *> If RANGE='V', the lower bound of the interval to
137 *> be searched for eigenvalues. VL < VU.
138 *> Not referenced if RANGE = 'A' or 'I'.
145 *> If RANGE='V', the upper bound of the interval to
146 *> be searched for eigenvalues. VL < VU.
147 *> Not referenced if RANGE = 'A' or 'I'.
154 *> If RANGE='I', the index of the
155 *> smallest eigenvalue to be returned.
156 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
157 *> Not referenced if RANGE = 'A' or 'V'.
164 *> If RANGE='I', the index of the
165 *> largest eigenvalue to be returned.
166 *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
167 *> Not referenced if RANGE = 'A' or 'V'.
173 *> The absolute error tolerance for the eigenvalues.
174 *> An approximate eigenvalue is accepted as converged
175 *> when it is determined to lie in an interval [a,b]
176 *> of width less than or equal to
178 *> ABSTOL + EPS * max( |a|,|b| ) ,
180 *> where EPS is the machine precision. If ABSTOL is less than
181 *> or equal to zero, then EPS*|T| will be used in its place,
182 *> where |T| is the 1-norm of the tridiagonal matrix obtained
183 *> by reducing C to tridiagonal form, where C is the symmetric
184 *> matrix of the standard symmetric problem to which the
185 *> generalized problem is transformed.
187 *> Eigenvalues will be computed most accurately when ABSTOL is
188 *> set to twice the underflow threshold 2*SLAMCH('S'), not zero.
189 *> If this routine returns with INFO>0, indicating that some
190 *> eigenvectors did not converge, try setting ABSTOL to
197 *> The total number of eigenvalues found. 0 <= M <= N.
198 *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
203 *> W is REAL array, dimension (N)
204 *> The first M elements contain the selected
205 *> eigenvalues in ascending order.
210 *> Z is COMPLEX array, dimension (LDZ, max(1,M))
211 *> If JOBZ = 'N', then Z is not referenced.
212 *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
213 *> contain the orthonormal eigenvectors of the matrix A
214 *> corresponding to the selected eigenvalues, with the i-th
215 *> column of Z holding the eigenvector associated with W(i).
216 *> The eigenvectors are normalized as follows:
217 *> if ITYPE = 1 or 2, Z**T*B*Z = I;
218 *> if ITYPE = 3, Z**T*inv(B)*Z = I.
220 *> If an eigenvector fails to converge, then that column of Z
221 *> contains the latest approximation to the eigenvector, and the
222 *> index of the eigenvector is returned in IFAIL.
223 *> Note: the user must ensure that at least max(1,M) columns are
224 *> supplied in the array Z; if RANGE = 'V', the exact value of M
225 *> is not known in advance and an upper bound must be used.
231 *> The leading dimension of the array Z. LDZ >= 1, and if
232 *> JOBZ = 'V', LDZ >= max(1,N).
237 *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
238 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
244 *> The length of the array WORK. LWORK >= max(1,2*N).
245 *> For optimal efficiency, LWORK >= (NB+1)*N,
246 *> where NB is the blocksize for CHETRD returned by ILAENV.
248 *> If LWORK = -1, then a workspace query is assumed; the routine
249 *> only calculates the optimal size of the WORK array, returns
250 *> this value as the first entry of the WORK array, and no error
251 *> message related to LWORK is issued by XERBLA.
256 *> RWORK is REAL array, dimension (7*N)
261 *> IWORK is INTEGER array, dimension (5*N)
266 *> IFAIL is INTEGER array, dimension (N)
267 *> If JOBZ = 'V', then if INFO = 0, the first M elements of
268 *> IFAIL are zero. If INFO > 0, then IFAIL contains the
269 *> indices of the eigenvectors that failed to converge.
270 *> If JOBZ = 'N', then IFAIL is not referenced.
276 *> = 0: successful exit
277 *> < 0: if INFO = -i, the i-th argument had an illegal value
278 *> > 0: CPOTRF or CHEEVX returned an error code:
279 *> <= N: if INFO = i, CHEEVX failed to converge;
280 *> i eigenvectors failed to converge. Their indices
281 *> are stored in array IFAIL.
282 *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
283 *> minor of order i of B is not positive definite.
284 *> The factorization of B could not be completed and
285 *> no eigenvalues or eigenvectors were computed.
291 *> \author Univ. of Tennessee
292 *> \author Univ. of California Berkeley
293 *> \author Univ. of Colorado Denver
298 *> \ingroup complexHEeigen
300 *> \par Contributors:
303 *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
305 * =====================================================================
306 SUBROUTINE CHEGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
307 $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
308 $ LWORK, RWORK, IWORK, IFAIL, INFO )
310 * -- LAPACK driver routine (version 3.6.1) --
311 * -- LAPACK is a software package provided by Univ. of Tennessee, --
312 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
315 * .. Scalar Arguments ..
316 CHARACTER JOBZ, RANGE, UPLO
317 INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
320 * .. Array Arguments ..
321 INTEGER IFAIL( * ), IWORK( * )
322 REAL RWORK( * ), W( * )
323 COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ),
327 * =====================================================================
331 PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
333 * .. Local Scalars ..
334 LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
338 * .. External Functions ..
341 EXTERNAL ILAENV, LSAME
343 * .. External Subroutines ..
344 EXTERNAL CHEEVX, CHEGST, CPOTRF, CTRMM, CTRSM, XERBLA
346 * .. Intrinsic Functions ..
349 * .. Executable Statements ..
351 * Test the input parameters.
353 WANTZ = LSAME( JOBZ, 'V' )
354 UPPER = LSAME( UPLO, 'U' )
355 ALLEIG = LSAME( RANGE, 'A' )
356 VALEIG = LSAME( RANGE, 'V' )
357 INDEIG = LSAME( RANGE, 'I' )
358 LQUERY = ( LWORK.EQ.-1 )
361 IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
363 ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
365 ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
367 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
369 ELSE IF( N.LT.0 ) THEN
371 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
373 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
377 IF( N.GT.0 .AND. VU.LE.VL )
379 ELSE IF( INDEIG ) THEN
380 IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
382 ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
388 IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
394 NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
395 LWKOPT = MAX( 1, ( NB + 1 )*N )
398 IF( LWORK.LT.MAX( 1, 2*N ) .AND. .NOT.LQUERY ) THEN
404 CALL XERBLA( 'CHEGVX', -INFO )
406 ELSE IF( LQUERY ) THEN
410 * Quick return if possible
417 * Form a Cholesky factorization of B.
419 CALL CPOTRF( UPLO, N, B, LDB, INFO )
425 * Transform problem to standard eigenvalue problem and solve.
427 CALL CHEGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
428 CALL CHEEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
429 $ M, W, Z, LDZ, WORK, LWORK, RWORK, IWORK, IFAIL,
434 * Backtransform eigenvectors to the original problem.
438 IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
440 * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
441 * backtransform eigenvectors: x = inv(L)**H*y or inv(U)*y
449 CALL CTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
452 ELSE IF( ITYPE.EQ.3 ) THEN
454 * For B*A*x=(lambda)*x;
455 * backtransform eigenvectors: x = L*y or U**H*y
463 CALL CTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, CONE, B,
468 * Set WORK(1) to optimal complex workspace size.