1 *> \brief <b> CHBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download CHBEVD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbevd.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbevd.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbevd.f">
21 * SUBROUTINE CHBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
22 * LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
24 * .. Scalar Arguments ..
25 * CHARACTER JOBZ, UPLO
26 * INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
28 * .. Array Arguments ..
30 * REAL RWORK( * ), W( * )
31 * COMPLEX AB( LDAB, * ), WORK( * ), Z( LDZ, * )
40 *> CHBEVD computes all the eigenvalues and, optionally, eigenvectors of
41 *> a complex Hermitian band matrix A. If eigenvectors are desired, it
42 *> uses a divide and conquer algorithm.
44 *> The divide and conquer algorithm makes very mild assumptions about
45 *> floating point arithmetic. It will work on machines with a guard
46 *> digit in add/subtract, or on those binary machines without guard
47 *> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
48 *> Cray-2. It could conceivably fail on hexadecimal or decimal machines
49 *> without guard digits, but we know of none.
57 *> JOBZ is CHARACTER*1
58 *> = 'N': Compute eigenvalues only;
59 *> = 'V': Compute eigenvalues and eigenvectors.
64 *> UPLO is CHARACTER*1
65 *> = 'U': Upper triangle of A is stored;
66 *> = 'L': Lower triangle of A is stored.
72 *> The order of the matrix A. N >= 0.
78 *> The number of superdiagonals of the matrix A if UPLO = 'U',
79 *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
84 *> AB is COMPLEX array, dimension (LDAB, N)
85 *> On entry, the upper or lower triangle of the Hermitian band
86 *> matrix A, stored in the first KD+1 rows of the array. The
87 *> j-th column of A is stored in the j-th column of the array AB
89 *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
90 *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
92 *> On exit, AB is overwritten by values generated during the
93 *> reduction to tridiagonal form. If UPLO = 'U', the first
94 *> superdiagonal and the diagonal of the tridiagonal matrix T
95 *> are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
96 *> the diagonal and first subdiagonal of T are returned in the
97 *> first two rows of AB.
103 *> The leading dimension of the array AB. LDAB >= KD + 1.
108 *> W is REAL array, dimension (N)
109 *> If INFO = 0, the eigenvalues in ascending order.
114 *> Z is COMPLEX array, dimension (LDZ, N)
115 *> If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
116 *> eigenvectors of the matrix A, with the i-th column of Z
117 *> holding the eigenvector associated with W(i).
118 *> If JOBZ = 'N', then Z is not referenced.
124 *> The leading dimension of the array Z. LDZ >= 1, and if
125 *> JOBZ = 'V', LDZ >= max(1,N).
130 *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
131 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
137 *> The dimension of the array WORK.
138 *> If N <= 1, LWORK must be at least 1.
139 *> If JOBZ = 'N' and N > 1, LWORK must be at least N.
140 *> If JOBZ = 'V' and N > 1, LWORK must be at least 2*N**2.
142 *> If LWORK = -1, then a workspace query is assumed; the routine
143 *> only calculates the optimal sizes of the WORK, RWORK and
144 *> IWORK arrays, returns these values as the first entries of
145 *> the WORK, RWORK and IWORK arrays, and no error message
146 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
151 *> RWORK is REAL array,
152 *> dimension (LRWORK)
153 *> On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
159 *> The dimension of array RWORK.
160 *> If N <= 1, LRWORK must be at least 1.
161 *> If JOBZ = 'N' and N > 1, LRWORK must be at least N.
162 *> If JOBZ = 'V' and N > 1, LRWORK must be at least
165 *> If LRWORK = -1, then a workspace query is assumed; the
166 *> routine only calculates the optimal sizes of the WORK, RWORK
167 *> and IWORK arrays, returns these values as the first entries
168 *> of the WORK, RWORK and IWORK arrays, and no error message
169 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
174 *> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
175 *> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
181 *> The dimension of array IWORK.
182 *> If JOBZ = 'N' or N <= 1, LIWORK must be at least 1.
183 *> If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N .
185 *> If LIWORK = -1, then a workspace query is assumed; the
186 *> routine only calculates the optimal sizes of the WORK, RWORK
187 *> and IWORK arrays, returns these values as the first entries
188 *> of the WORK, RWORK and IWORK arrays, and no error message
189 *> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
195 *> = 0: successful exit.
196 *> < 0: if INFO = -i, the i-th argument had an illegal value.
197 *> > 0: if INFO = i, the algorithm failed to converge; i
198 *> off-diagonal elements of an intermediate tridiagonal
199 *> form did not converge to zero.
205 *> \author Univ. of Tennessee
206 *> \author Univ. of California Berkeley
207 *> \author Univ. of Colorado Denver
210 *> \date November 2011
212 *> \ingroup complexOTHEReigen
214 * =====================================================================
215 SUBROUTINE CHBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
216 $ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
218 * -- LAPACK driver routine (version 3.4.0) --
219 * -- LAPACK is a software package provided by Univ. of Tennessee, --
220 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
223 * .. Scalar Arguments ..
225 INTEGER INFO, KD, LDAB, LDZ, LIWORK, LRWORK, LWORK, N
227 * .. Array Arguments ..
229 REAL RWORK( * ), W( * )
230 COMPLEX AB( LDAB, * ), WORK( * ), Z( LDZ, * )
233 * =====================================================================
237 PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
239 PARAMETER ( CZERO = ( 0.0E0, 0.0E0 ),
240 $ CONE = ( 1.0E0, 0.0E0 ) )
242 * .. Local Scalars ..
243 LOGICAL LOWER, LQUERY, WANTZ
244 INTEGER IINFO, IMAX, INDE, INDWK2, INDWRK, ISCALE,
245 $ LIWMIN, LLRWK, LLWK2, LRWMIN, LWMIN
246 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
249 * .. External Functions ..
252 EXTERNAL LSAME, CLANHB, SLAMCH
254 * .. External Subroutines ..
255 EXTERNAL CGEMM, CHBTRD, CLACPY, CLASCL, CSTEDC, SSCAL,
258 * .. Intrinsic Functions ..
261 * .. Executable Statements ..
263 * Test the input parameters.
265 WANTZ = LSAME( JOBZ, 'V' )
266 LOWER = LSAME( UPLO, 'L' )
267 LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 .OR. LRWORK.EQ.-1 )
277 LRWMIN = 1 + 5*N + 2*N**2
285 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
287 ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
289 ELSE IF( N.LT.0 ) THEN
291 ELSE IF( KD.LT.0 ) THEN
293 ELSE IF( LDAB.LT.KD+1 ) THEN
295 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
304 IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
306 ELSE IF( LRWORK.LT.LRWMIN .AND. .NOT.LQUERY ) THEN
308 ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
314 CALL XERBLA( 'CHBEVD', -INFO )
316 ELSE IF( LQUERY ) THEN
320 * Quick return if possible
332 * Get machine constants.
334 SAFMIN = SLAMCH( 'Safe minimum' )
335 EPS = SLAMCH( 'Precision' )
336 SMLNUM = SAFMIN / EPS
337 BIGNUM = ONE / SMLNUM
338 RMIN = SQRT( SMLNUM )
339 RMAX = SQRT( BIGNUM )
341 * Scale matrix to allowable range, if necessary.
343 ANRM = CLANHB( 'M', UPLO, N, KD, AB, LDAB, RWORK )
345 IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
348 ELSE IF( ANRM.GT.RMAX ) THEN
352 IF( ISCALE.EQ.1 ) THEN
354 CALL CLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
356 CALL CLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
360 * Call CHBTRD to reduce Hermitian band matrix to tridiagonal form.
365 LLWK2 = LWORK - INDWK2 + 1
366 LLRWK = LRWORK - INDWRK + 1
367 CALL CHBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, RWORK( INDE ), Z,
370 * For eigenvalues only, call SSTERF. For eigenvectors, call CSTEDC.
372 IF( .NOT.WANTZ ) THEN
373 CALL SSTERF( N, W, RWORK( INDE ), INFO )
375 CALL CSTEDC( 'I', N, W, RWORK( INDE ), WORK, N, WORK( INDWK2 ),
376 $ LLWK2, RWORK( INDWRK ), LLRWK, IWORK, LIWORK,
378 CALL CGEMM( 'N', 'N', N, N, N, CONE, Z, LDZ, WORK, N, CZERO,
379 $ WORK( INDWK2 ), N )
380 CALL CLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
383 * If matrix was scaled, then rescale eigenvalues appropriately.
385 IF( ISCALE.EQ.1 ) THEN
391 CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )