4 * RECURSIVE SUBROUTINE CGELQT3( M, N, A, LDA, T, LDT, INFO )
6 * .. Scalar Arguments ..
7 * INTEGER INFO, LDA, M, N, LDT
9 * .. Array Arguments ..
10 * COMPLEX A( LDA, * ), T( LDT, * )
19 *> CGELQT3 recursively computes a LQ factorization of a complex M-by-N
20 *> matrix A, using the compact WY representation of Q.
22 *> Based on the algorithm of Elmroth and Gustavson,
23 *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
32 *> The number of rows of the matrix A. M =< N.
38 *> The number of columns of the matrix A. N >= 0.
43 *> A is COMPLEX array, dimension (LDA,N)
44 *> On entry, the real M-by-N matrix A. On exit, the elements on and
45 *> below the diagonal contain the N-by-N lower triangular matrix L; the
46 *> elements above the diagonal are the rows of V. See below for
53 *> The leading dimension of the array A. LDA >= max(1,M).
58 *> T is COMPLEX array, dimension (LDT,N)
59 *> The N-by-N upper triangular factor of the block reflector.
60 *> The elements on and above the diagonal contain the block
61 *> reflector T; the elements below the diagonal are not used.
62 *> See below for further details.
68 *> The leading dimension of the array T. LDT >= max(1,N).
74 *> = 0: successful exit
75 *> < 0: if INFO = -i, the i-th argument had an illegal value
81 *> \author Univ. of Tennessee
82 *> \author Univ. of California Berkeley
83 *> \author Univ. of Colorado Denver
86 *> \date September 2012
88 *> \ingroup doubleGEcomputational
90 *> \par Further Details:
91 * =====================
95 *> The matrix V stores the elementary reflectors H(i) in the i-th column
96 *> below the diagonal. For example, if M=5 and N=3, the matrix V is
98 *> V = ( 1 v1 v1 v1 v1 )
103 *> where the vi's represent the vectors which define H(i), which are returned
104 *> in the matrix A. The 1's along the diagonal of V are not stored in A. The
105 *> block reflector H is then given by
107 *> H = I - V * T * V**T
109 *> where V**T is the transpose of V.
111 *> For details of the algorithm, see Elmroth and Gustavson (cited above).
114 * =====================================================================
115 RECURSIVE SUBROUTINE CGELQT3( M, N, A, LDA, T, LDT, INFO )
117 * -- LAPACK computational routine (version 3.4.2) --
118 * -- LAPACK is a software package provided by Univ. of Tennessee, --
119 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
122 * .. Scalar Arguments ..
123 INTEGER INFO, LDA, M, N, LDT
125 * .. Array Arguments ..
126 COMPLEX A( LDA, * ), T( LDT, * )
129 * =====================================================================
133 PARAMETER ( ONE = (1.0E+00,0.0E+00) )
134 PARAMETER ( ZERO = (0.0E+00,0.0E+00))
136 * .. Local Scalars ..
137 INTEGER I, I1, J, J1, M1, M2, N1, N2, IINFO
139 * .. External Subroutines ..
140 EXTERNAL CLARFG, CTRMM, CGEMM, XERBLA
142 * .. Executable Statements ..
147 ELSE IF( N .LT. M ) THEN
149 ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
151 ELSE IF( LDT .LT. MAX( 1, M ) ) THEN
155 CALL XERBLA( 'CGELQT3', -INFO )
161 * Compute Householder transform when N=1
163 CALL CLARFG( N, A, A( 1, MIN( 2, N ) ), LDA, T )
168 * Otherwise, split A into blocks...
175 * Compute A(1:M1,1:N) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
177 CALL CGELQT3( M1, N, A, LDA, T, LDT, IINFO )
179 * Compute A(J1:M,1:N) = A(J1:M,1:N) Q1^H [workspace: T(1:N1,J1:N)]
183 T( I+M1, J ) = A( I+M1, J )
186 CALL CTRMM( 'R', 'U', 'C', 'U', M2, M1, ONE,
187 & A, LDA, T( I1, 1 ), LDT )
189 CALL CGEMM( 'N', 'C', M2, M1, N-M1, ONE, A( I1, I1 ), LDA,
190 & A( 1, I1 ), LDA, ONE, T( I1, 1 ), LDT)
192 CALL CTRMM( 'R', 'U', 'N', 'N', M2, M1, ONE,
193 & T, LDT, T( I1, 1 ), LDT )
195 CALL CGEMM( 'N', 'N', M2, N-M1, M1, -ONE, T( I1, 1 ), LDT,
196 & A( 1, I1 ), LDA, ONE, A( I1, I1 ), LDA )
198 CALL CTRMM( 'R', 'U', 'N', 'U', M2, M1 , ONE,
199 & A, LDA, T( I1, 1 ), LDT )
203 A( I+M1, J ) = A( I+M1, J ) - T( I+M1, J )
208 * Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
210 CALL CGELQT3( M2, N-M1, A( I1, I1 ), LDA,
211 & T( I1, I1 ), LDT, IINFO )
213 * Compute T3 = T(J1:N1,1:N) = -T1 Y1^H Y2 T2
217 T( J, I+M1 ) = (A( J, I+M1 ))
221 CALL CTRMM( 'R', 'U', 'C', 'U', M1, M2, ONE,
222 & A( I1, I1 ), LDA, T( 1, I1 ), LDT )
224 CALL CGEMM( 'N', 'C', M1, M2, N-M, ONE, A( 1, J1 ), LDA,
225 & A( I1, J1 ), LDA, ONE, T( 1, I1 ), LDT )
227 CALL CTRMM( 'L', 'U', 'N', 'N', M1, M2, -ONE, T, LDT,
230 CALL CTRMM( 'R', 'U', 'N', 'N', M1, M2, ONE,
231 & T( I1, I1 ), LDT, T( 1, I1 ), LDT )
235 * Y = (Y1,Y2); L = [ L1 0 ]; T = [T1 T3]
236 * [ A(1:N1,J1:N) L2 ] [ 0 T2]