1 *> \brief \b CGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.
3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download CGEHD2 + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgehd2.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgehd2.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgehd2.f">
21 * SUBROUTINE CGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
23 * .. Scalar Arguments ..
24 * INTEGER IHI, ILO, INFO, LDA, N
26 * .. Array Arguments ..
27 * COMPLEX A( LDA, * ), TAU( * ), WORK( * )
36 *> CGEHD2 reduces a complex general matrix A to upper Hessenberg form H
37 *> by a unitary similarity transformation: Q**H * A * Q = H .
46 *> The order of the matrix A. N >= 0.
58 *> It is assumed that A is already upper triangular in rows
59 *> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
60 *> set by a previous call to CGEBAL; otherwise they should be
61 *> set to 1 and N respectively. See Further Details.
62 *> 1 <= ILO <= IHI <= max(1,N).
67 *> A is COMPLEX array, dimension (LDA,N)
68 *> On entry, the n by n general matrix to be reduced.
69 *> On exit, the upper triangle and the first subdiagonal of A
70 *> are overwritten with the upper Hessenberg matrix H, and the
71 *> elements below the first subdiagonal, with the array TAU,
72 *> represent the unitary matrix Q as a product of elementary
73 *> reflectors. See Further Details.
79 *> The leading dimension of the array A. LDA >= max(1,N).
84 *> TAU is COMPLEX array, dimension (N-1)
85 *> The scalar factors of the elementary reflectors (see Further
91 *> WORK is COMPLEX array, dimension (N)
97 *> = 0: successful exit
98 *> < 0: if INFO = -i, the i-th argument had an illegal value.
104 *> \author Univ. of Tennessee
105 *> \author Univ. of California Berkeley
106 *> \author Univ. of Colorado Denver
109 *> \date September 2012
111 *> \ingroup complexGEcomputational
113 *> \par Further Details:
114 * =====================
118 *> The matrix Q is represented as a product of (ihi-ilo) elementary
121 *> Q = H(ilo) H(ilo+1) . . . H(ihi-1).
123 *> Each H(i) has the form
125 *> H(i) = I - tau * v * v**H
127 *> where tau is a complex scalar, and v is a complex vector with
128 *> v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
129 *> exit in A(i+2:ihi,i), and tau in TAU(i).
131 *> The contents of A are illustrated by the following example, with
132 *> n = 7, ilo = 2 and ihi = 6:
134 *> on entry, on exit,
136 *> ( a a a a a a a ) ( a a h h h h a )
137 *> ( a a a a a a ) ( a h h h h a )
138 *> ( a a a a a a ) ( h h h h h h )
139 *> ( a a a a a a ) ( v2 h h h h h )
140 *> ( a a a a a a ) ( v2 v3 h h h h )
141 *> ( a a a a a a ) ( v2 v3 v4 h h h )
144 *> where a denotes an element of the original matrix A, h denotes a
145 *> modified element of the upper Hessenberg matrix H, and vi denotes an
146 *> element of the vector defining H(i).
149 * =====================================================================
150 SUBROUTINE CGEHD2( N, ILO, IHI, A, LDA, TAU, WORK, INFO )
152 * -- LAPACK computational routine (version 3.4.2) --
153 * -- LAPACK is a software package provided by Univ. of Tennessee, --
154 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
157 * .. Scalar Arguments ..
158 INTEGER IHI, ILO, INFO, LDA, N
160 * .. Array Arguments ..
161 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
164 * =====================================================================
168 PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
170 * .. Local Scalars ..
174 * .. External Subroutines ..
175 EXTERNAL CLARF, CLARFG, XERBLA
177 * .. Intrinsic Functions ..
178 INTRINSIC CONJG, MAX, MIN
180 * .. Executable Statements ..
182 * Test the input parameters
187 ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
189 ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
191 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
195 CALL XERBLA( 'CGEHD2', -INFO )
199 DO 10 I = ILO, IHI - 1
201 * Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
204 CALL CLARFG( IHI-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAU( I ) )
207 * Apply H(i) to A(1:ihi,i+1:ihi) from the right
209 CALL CLARF( 'Right', IHI, IHI-I, A( I+1, I ), 1, TAU( I ),
210 $ A( 1, I+1 ), LDA, WORK )
212 * Apply H(i)**H to A(i+1:ihi,i+1:n) from the left
214 CALL CLARF( 'Left', IHI-I, N-I, A( I+1, I ), 1,
215 $ CONJG( TAU( I ) ), A( I+1, I+1 ), LDA, WORK )