3 * =========== DOCUMENTATION ===========
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
9 *> Download CGEBRD + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgebrd.f">
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgebrd.f">
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgebrd.f">
21 * SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
24 * .. Scalar Arguments ..
25 * INTEGER INFO, LDA, LWORK, M, N
27 * .. Array Arguments ..
29 * COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ),
39 *> CGEBRD reduces a general complex M-by-N matrix A to upper or lower
40 *> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
42 *> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
51 *> The number of rows in the matrix A. M >= 0.
57 *> The number of columns in the matrix A. N >= 0.
62 *> A is COMPLEX array, dimension (LDA,N)
63 *> On entry, the M-by-N general matrix to be reduced.
65 *> if m >= n, the diagonal and the first superdiagonal are
66 *> overwritten with the upper bidiagonal matrix B; the
67 *> elements below the diagonal, with the array TAUQ, represent
68 *> the unitary matrix Q as a product of elementary
69 *> reflectors, and the elements above the first superdiagonal,
70 *> with the array TAUP, represent the unitary matrix P as
71 *> a product of elementary reflectors;
72 *> if m < n, the diagonal and the first subdiagonal are
73 *> overwritten with the lower bidiagonal matrix B; the
74 *> elements below the first subdiagonal, with the array TAUQ,
75 *> represent the unitary matrix Q as a product of
76 *> elementary reflectors, and the elements above the diagonal,
77 *> with the array TAUP, represent the unitary matrix P as
78 *> a product of elementary reflectors.
79 *> See Further Details.
85 *> The leading dimension of the array A. LDA >= max(1,M).
90 *> D is REAL array, dimension (min(M,N))
91 *> The diagonal elements of the bidiagonal matrix B:
97 *> E is REAL array, dimension (min(M,N)-1)
98 *> The off-diagonal elements of the bidiagonal matrix B:
99 *> if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
100 *> if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
105 *> TAUQ is COMPLEX array dimension (min(M,N))
106 *> The scalar factors of the elementary reflectors which
107 *> represent the unitary matrix Q. See Further Details.
112 *> TAUP is COMPLEX array, dimension (min(M,N))
113 *> The scalar factors of the elementary reflectors which
114 *> represent the unitary matrix P. See Further Details.
119 *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
120 *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
126 *> The length of the array WORK. LWORK >= max(1,M,N).
127 *> For optimum performance LWORK >= (M+N)*NB, where NB
128 *> is the optimal blocksize.
130 *> If LWORK = -1, then a workspace query is assumed; the routine
131 *> only calculates the optimal size of the WORK array, returns
132 *> this value as the first entry of the WORK array, and no error
133 *> message related to LWORK is issued by XERBLA.
139 *> = 0: successful exit.
140 *> < 0: if INFO = -i, the i-th argument had an illegal value.
146 *> \author Univ. of Tennessee
147 *> \author Univ. of California Berkeley
148 *> \author Univ. of Colorado Denver
151 *> \date November 2011
153 *> \ingroup complexGEcomputational
155 *> \par Further Details:
156 * =====================
160 *> The matrices Q and P are represented as products of elementary
165 *> Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
167 *> Each H(i) and G(i) has the form:
169 *> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
171 *> where tauq and taup are complex scalars, and v and u are complex
172 *> vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
173 *> A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
174 *> A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
178 *> Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
180 *> Each H(i) and G(i) has the form:
182 *> H(i) = I - tauq * v * v**H and G(i) = I - taup * u * u**H
184 *> where tauq and taup are complex scalars, and v and u are complex
185 *> vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
186 *> A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
187 *> A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
189 *> The contents of A on exit are illustrated by the following examples:
191 *> m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
193 *> ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
194 *> ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
195 *> ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
196 *> ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
197 *> ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
198 *> ( v1 v2 v3 v4 v5 )
200 *> where d and e denote diagonal and off-diagonal elements of B, vi
201 *> denotes an element of the vector defining H(i), and ui an element of
202 *> the vector defining G(i).
205 * =====================================================================
206 SUBROUTINE CGEBRD( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, LWORK,
209 * -- LAPACK computational routine (version 3.4.0) --
210 * -- LAPACK is a software package provided by Univ. of Tennessee, --
211 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
214 * .. Scalar Arguments ..
215 INTEGER INFO, LDA, LWORK, M, N
217 * .. Array Arguments ..
219 COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ),
223 * =====================================================================
227 PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
229 * .. Local Scalars ..
231 INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKOPT, MINMN, NB,
235 * .. External Subroutines ..
236 EXTERNAL CGEBD2, CGEMM, CLABRD, XERBLA
238 * .. Intrinsic Functions ..
239 INTRINSIC MAX, MIN, REAL
241 * .. External Functions ..
245 * .. Executable Statements ..
247 * Test the input parameters
250 NB = MAX( 1, ILAENV( 1, 'CGEBRD', ' ', M, N, -1, -1 ) )
252 WORK( 1 ) = REAL( LWKOPT )
253 LQUERY = ( LWORK.EQ.-1 )
256 ELSE IF( N.LT.0 ) THEN
258 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
260 ELSE IF( LWORK.LT.MAX( 1, M, N ) .AND. .NOT.LQUERY ) THEN
264 CALL XERBLA( 'CGEBRD', -INFO )
266 ELSE IF( LQUERY ) THEN
270 * Quick return if possible
273 IF( MINMN.EQ.0 ) THEN
282 IF( NB.GT.1 .AND. NB.LT.MINMN ) THEN
284 * Set the crossover point NX.
286 NX = MAX( NB, ILAENV( 3, 'CGEBRD', ' ', M, N, -1, -1 ) )
288 * Determine when to switch from blocked to unblocked code.
290 IF( NX.LT.MINMN ) THEN
292 IF( LWORK.LT.WS ) THEN
294 * Not enough work space for the optimal NB, consider using
295 * a smaller block size.
297 NBMIN = ILAENV( 2, 'CGEBRD', ' ', M, N, -1, -1 )
298 IF( LWORK.GE.( M+N )*NBMIN ) THEN
310 DO 30 I = 1, MINMN - NX, NB
312 * Reduce rows and columns i:i+ib-1 to bidiagonal form and return
313 * the matrices X and Y which are needed to update the unreduced
316 CALL CLABRD( M-I+1, N-I+1, NB, A( I, I ), LDA, D( I ), E( I ),
317 $ TAUQ( I ), TAUP( I ), WORK, LDWRKX,
318 $ WORK( LDWRKX*NB+1 ), LDWRKY )
320 * Update the trailing submatrix A(i+ib:m,i+ib:n), using
321 * an update of the form A := A - V*Y**H - X*U**H
323 CALL CGEMM( 'No transpose', 'Conjugate transpose', M-I-NB+1,
324 $ N-I-NB+1, NB, -ONE, A( I+NB, I ), LDA,
325 $ WORK( LDWRKX*NB+NB+1 ), LDWRKY, ONE,
326 $ A( I+NB, I+NB ), LDA )
327 CALL CGEMM( 'No transpose', 'No transpose', M-I-NB+1, N-I-NB+1,
328 $ NB, -ONE, WORK( NB+1 ), LDWRKX, A( I, I+NB ), LDA,
329 $ ONE, A( I+NB, I+NB ), LDA )
331 * Copy diagonal and off-diagonal elements of B back into A
334 DO 10 J = I, I + NB - 1
339 DO 20 J = I, I + NB - 1
346 * Use unblocked code to reduce the remainder of the matrix
348 CALL CGEBD2( M-I+1, N-I+1, A( I, I ), LDA, D( I ), E( I ),
349 $ TAUQ( I ), TAUP( I ), WORK, IINFO )