2 //Copyright (C) 2014 LunarG, Inc.
6 //Redistribution and use in source and binary forms, with or without
7 //modification, are permitted provided that the following conditions
10 // Redistributions of source code must retain the above copyright
11 // notice, this list of conditions and the following disclaimer.
13 // Redistributions in binary form must reproduce the above
14 // copyright notice, this list of conditions and the following
15 // disclaimer in the documentation and/or other materials provided
16 // with the distribution.
18 // Neither the name of 3Dlabs Inc. Ltd. nor the names of its
19 // contributors may be used to endorse or promote products derived
20 // from this software without specific prior written permission.
22 //THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 //"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 //LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 //FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 //COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 //INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 //BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 //LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 //CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 //LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 //ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 //POSSIBILITY OF SUCH DAMAGE.
36 // Author: John Kessenich, LunarG
41 // Simple in-memory representation (IR) of SPIRV. Just for holding
42 // Each function's CFG of blocks. Has this hierarchy:
43 // - Module, which is a list of
44 // - Function, which is a list of
45 // - Block, which is a list of
64 const Id NoResult = 0;
67 const unsigned int BadValue = 0xFFFFFFFF;
68 const Decoration NoPrecision = (Decoration)BadValue;
69 const MemorySemanticsMask MemorySemanticsAllMemory = (MemorySemanticsMask)0x3FF;
72 // SPIR-V IR instruction.
77 Instruction(Id resultId, Id typeId, Op opCode) : resultId(resultId), typeId(typeId), opCode(opCode) { }
78 explicit Instruction(Op opCode) : resultId(NoResult), typeId(NoType), opCode(opCode) { }
79 virtual ~Instruction() {}
80 void addIdOperand(Id id) { operands.push_back(id); }
81 void addImmediateOperand(unsigned int immediate) { operands.push_back(immediate); }
82 void addStringOperand(const char* str)
86 char* wordString = (char*)&word;
87 char* wordPtr = wordString;
95 addImmediateOperand(word);
101 // deal with partial last word
104 for (; charCount < 4; ++charCount)
106 addImmediateOperand(word);
109 Op getOpCode() const { return opCode; }
110 int getNumOperands() const { return (int)operands.size(); }
111 Id getResultId() const { return resultId; }
112 Id getTypeId() const { return typeId; }
113 Id getIdOperand(int op) const { return operands[op]; }
114 unsigned int getImmediateOperand(int op) const { return operands[op]; }
115 const char* getStringOperand() const { return originalString.c_str(); }
117 // Write out the binary form.
118 void dump(std::vector<unsigned int>& out) const
120 // Compute the wordCount
121 unsigned int wordCount = 1;
126 wordCount += (unsigned int)operands.size();
128 // Write out the beginning of the instruction
129 out.push_back(((wordCount) << WordCountShift) | opCode);
131 out.push_back(typeId);
133 out.push_back(resultId);
135 // Write out the operands
136 for (int op = 0; op < (int)operands.size(); ++op)
137 out.push_back(operands[op]);
141 Instruction(const Instruction&);
145 std::vector<Id> operands;
146 std::string originalString; // could be optimized away; convenience for getting string operand
155 Block(Id id, Function& parent);
158 // TODO: free instructions
161 Id getId() { return instructions.front()->getResultId(); }
163 Function& getParent() const { return parent; }
164 void addInstruction(Instruction* inst);
165 void addPredecessor(Block* pred) { predecessors.push_back(pred); }
166 void addLocalVariable(Instruction* inst) { localVariables.push_back(inst); }
167 int getNumPredecessors() const { return (int)predecessors.size(); }
168 void setUnreachable() { unreachable = true; }
169 bool isUnreachable() const { return unreachable; }
171 bool isTerminated() const
173 switch (instructions.back()->getOpCode()) {
175 case OpBranchConditional:
186 void dump(std::vector<unsigned int>& out) const
188 // skip the degenerate unreachable blocks
189 // TODO: code gen: skip all unreachable blocks (transitive closure)
190 // (but, until that's done safer to keep non-degenerate unreachable blocks, in case others depend on something)
191 if (unreachable && instructions.size() <= 2)
194 instructions[0]->dump(out);
195 for (int i = 0; i < (int)localVariables.size(); ++i)
196 localVariables[i]->dump(out);
197 for (int i = 1; i < (int)instructions.size(); ++i)
198 instructions[i]->dump(out);
203 Block& operator=(Block&);
205 // To enforce keeping parent and ownership in sync:
208 std::vector<Instruction*> instructions;
209 std::vector<Block*> predecessors;
210 std::vector<Instruction*> localVariables;
213 // track whether this block is known to be uncreachable (not necessarily
214 // true for all unreachable blocks, but should be set at least
215 // for the extraneous ones introduced by the builder).
220 // SPIR-V IR Function.
225 Function(Id id, Id resultType, Id functionType, Id firstParam, Module& parent);
228 for (int i = 0; i < (int)parameterInstructions.size(); ++i)
229 delete parameterInstructions[i];
231 for (int i = 0; i < (int)blocks.size(); ++i)
234 Id getId() const { return functionInstruction.getResultId(); }
235 Id getParamId(int p) { return parameterInstructions[p]->getResultId(); }
237 void addBlock(Block* block) { blocks.push_back(block); }
238 void popBlock(Block*) { blocks.pop_back(); }
240 Module& getParent() const { return parent; }
241 Block* getEntryBlock() const { return blocks.front(); }
242 Block* getLastBlock() const { return blocks.back(); }
243 void addLocalVariable(Instruction* inst);
244 Id getReturnType() const { return functionInstruction.getTypeId(); }
245 void dump(std::vector<unsigned int>& out) const
248 functionInstruction.dump(out);
250 // OpFunctionParameter
251 for (int p = 0; p < (int)parameterInstructions.size(); ++p)
252 parameterInstructions[p]->dump(out);
255 for (int b = 0; b < (int)blocks.size(); ++b)
256 blocks[b]->dump(out);
257 Instruction end(0, 0, OpFunctionEnd);
262 Function(const Function&);
263 Function& operator=(Function&);
266 Instruction functionInstruction;
267 std::vector<Instruction*> parameterInstructions;
268 std::vector<Block*> blocks;
280 // TODO delete things
283 void addFunction(Function *fun) { functions.push_back(fun); }
285 void mapInstruction(Instruction *instruction)
287 spv::Id resultId = instruction->getResultId();
288 // map the instruction's result id
289 if (resultId >= idToInstruction.size())
290 idToInstruction.resize(resultId + 16);
291 idToInstruction[resultId] = instruction;
294 Instruction* getInstruction(Id id) const { return idToInstruction[id]; }
295 spv::Id getTypeId(Id resultId) const { return idToInstruction[resultId]->getTypeId(); }
296 StorageClass getStorageClass(Id typeId) const { return (StorageClass)idToInstruction[typeId]->getImmediateOperand(0); }
297 void dump(std::vector<unsigned int>& out) const
299 for (int f = 0; f < (int)functions.size(); ++f)
300 functions[f]->dump(out);
304 Module(const Module&);
305 std::vector<Function*> functions;
307 // map from result id to instruction having that result id
308 std::vector<Instruction*> idToInstruction;
310 // map from a result id to its type id
314 // Implementation (it's here due to circular type definitions).
318 // - the OpFunction instruction
319 // - all the OpFunctionParameter instructions
320 __inline Function::Function(Id id, Id resultType, Id functionType, Id firstParamId, Module& parent)
321 : parent(parent), functionInstruction(id, resultType, OpFunction)
324 functionInstruction.addImmediateOperand(FunctionControlMaskNone);
325 functionInstruction.addIdOperand(functionType);
326 parent.mapInstruction(&functionInstruction);
327 parent.addFunction(this);
329 // OpFunctionParameter
330 Instruction* typeInst = parent.getInstruction(functionType);
331 int numParams = typeInst->getNumOperands() - 1;
332 for (int p = 0; p < numParams; ++p) {
333 Instruction* param = new Instruction(firstParamId + p, typeInst->getIdOperand(p + 1), OpFunctionParameter);
334 parent.mapInstruction(param);
335 parameterInstructions.push_back(param);
339 __inline void Function::addLocalVariable(Instruction* inst)
341 blocks[0]->addLocalVariable(inst);
342 parent.mapInstruction(inst);
345 __inline Block::Block(Id id, Function& parent) : parent(parent), unreachable(false)
347 instructions.push_back(new Instruction(id, NoType, OpLabel));
350 __inline void Block::addInstruction(Instruction* inst)
352 instructions.push_back(inst);
353 if (inst->getResultId())
354 parent.getParent().mapInstruction(inst);
357 }; // end spv namespace