Restore legacy interface for remap()
[platform/upstream/glslang.git] / SPIRV / SpvPostProcess.cpp
1 //
2 // Copyright (C) 2018 Google, Inc.
3 //
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions
8 // are met:
9 //
10 //    Redistributions of source code must retain the above copyright
11 //    notice, this list of conditions and the following disclaimer.
12 //
13 //    Redistributions in binary form must reproduce the above
14 //    copyright notice, this list of conditions and the following
15 //    disclaimer in the documentation and/or other materials provided
16 //    with the distribution.
17 //
18 //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
19 //    contributors may be used to endorse or promote products derived
20 //    from this software without specific prior written permission.
21 //
22 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 // POSSIBILITY OF SUCH DAMAGE.
34
35 //
36 // Post-processing for SPIR-V IR, in internal form, not standard binary form.
37 //
38
39 #include <cassert>
40 #include <cstdlib>
41
42 #include <unordered_map>
43 #include <unordered_set>
44 #include <algorithm>
45
46 #include "SpvBuilder.h"
47 #include "spirv.hpp"
48
49 namespace spv {
50     #include "GLSL.std.450.h"
51     #include "GLSL.ext.KHR.h"
52     #include "GLSL.ext.EXT.h"
53     #include "GLSL.ext.AMD.h"
54     #include "GLSL.ext.NV.h"
55 }
56
57 namespace spv {
58
59 #ifndef GLSLANG_WEB
60 // Hook to visit each operand type and result type of an instruction.
61 // Will be called multiple times for one instruction, once for each typed
62 // operand and the result.
63 void Builder::postProcessType(const Instruction& inst, Id typeId)
64 {
65     // Characterize the type being questioned
66     Id basicTypeOp = getMostBasicTypeClass(typeId);
67     int width = 0;
68     if (basicTypeOp == OpTypeFloat || basicTypeOp == OpTypeInt)
69         width = getScalarTypeWidth(typeId);
70
71     // Do opcode-specific checks
72     switch (inst.getOpCode()) {
73     case OpLoad:
74     case OpStore:
75         if (basicTypeOp == OpTypeStruct) {
76             if (containsType(typeId, OpTypeInt, 8))
77                 addCapability(CapabilityInt8);
78             if (containsType(typeId, OpTypeInt, 16))
79                 addCapability(CapabilityInt16);
80             if (containsType(typeId, OpTypeFloat, 16))
81                 addCapability(CapabilityFloat16);
82         } else {
83             StorageClass storageClass = getStorageClass(inst.getIdOperand(0));
84             if (width == 8) {
85                 switch (storageClass) {
86                 case StorageClassPhysicalStorageBufferEXT:
87                 case StorageClassUniform:
88                 case StorageClassStorageBuffer:
89                 case StorageClassPushConstant:
90                     break;
91                 default:
92                     addCapability(CapabilityInt8);
93                     break;
94                 }
95             } else if (width == 16) {
96                 switch (storageClass) {
97                 case StorageClassPhysicalStorageBufferEXT:
98                 case StorageClassUniform:
99                 case StorageClassStorageBuffer:
100                 case StorageClassPushConstant:
101                 case StorageClassInput:
102                 case StorageClassOutput:
103                     break;
104                 default:
105                     if (basicTypeOp == OpTypeInt)
106                         addCapability(CapabilityInt16);
107                     if (basicTypeOp == OpTypeFloat)
108                         addCapability(CapabilityFloat16);
109                     break;
110                 }
111             }
112         }
113         break;
114     case OpCopyObject:
115         break;
116     case OpFConvert:
117     case OpSConvert:
118     case OpUConvert:
119         // Look for any 8/16-bit storage capabilities. If there are none, assume that
120         // the convert instruction requires the Float16/Int8/16 capability.
121         if (containsType(typeId, OpTypeFloat, 16) || containsType(typeId, OpTypeInt, 16)) {
122             bool foundStorage = false;
123             for (auto it = capabilities.begin(); it != capabilities.end(); ++it) {
124                 spv::Capability cap = *it;
125                 if (cap == spv::CapabilityStorageInputOutput16 ||
126                     cap == spv::CapabilityStoragePushConstant16 ||
127                     cap == spv::CapabilityStorageUniformBufferBlock16 ||
128                     cap == spv::CapabilityStorageUniform16) {
129                     foundStorage = true;
130                     break;
131                 }
132             }
133             if (!foundStorage) {
134                 if (containsType(typeId, OpTypeFloat, 16))
135                     addCapability(CapabilityFloat16);
136                 if (containsType(typeId, OpTypeInt, 16))
137                     addCapability(CapabilityInt16);
138             }
139         }
140         if (containsType(typeId, OpTypeInt, 8)) {
141             bool foundStorage = false;
142             for (auto it = capabilities.begin(); it != capabilities.end(); ++it) {
143                 spv::Capability cap = *it;
144                 if (cap == spv::CapabilityStoragePushConstant8 ||
145                     cap == spv::CapabilityUniformAndStorageBuffer8BitAccess ||
146                     cap == spv::CapabilityStorageBuffer8BitAccess) {
147                     foundStorage = true;
148                     break;
149                 }
150             }
151             if (!foundStorage) {
152                 addCapability(CapabilityInt8);
153             }
154         }
155         break;
156     case OpExtInst:
157         switch (inst.getImmediateOperand(1)) {
158         case GLSLstd450Frexp:
159         case GLSLstd450FrexpStruct:
160             if (getSpvVersion() < spv::Spv_1_3 && containsType(typeId, OpTypeInt, 16))
161                 addExtension(spv::E_SPV_AMD_gpu_shader_int16);
162             break;
163         case GLSLstd450InterpolateAtCentroid:
164         case GLSLstd450InterpolateAtSample:
165         case GLSLstd450InterpolateAtOffset:
166             if (getSpvVersion() < spv::Spv_1_3 && containsType(typeId, OpTypeFloat, 16))
167                 addExtension(spv::E_SPV_AMD_gpu_shader_half_float);
168             break;
169         default:
170             break;
171         }
172         break;
173     case OpAccessChain:
174     case OpPtrAccessChain:
175         if (isPointerType(typeId))
176             break;
177         if (basicTypeOp == OpTypeInt) {
178             if (width == 16)
179                 addCapability(CapabilityInt16);
180             else if (width == 8)
181                 addCapability(CapabilityInt8);
182         }
183     default:
184         if (basicTypeOp == OpTypeInt) {
185             if (width == 16)
186                 addCapability(CapabilityInt16);
187             else if (width == 8)
188                 addCapability(CapabilityInt8);
189             else if (width == 64)
190                 addCapability(CapabilityInt64);
191         } else if (basicTypeOp == OpTypeFloat) {
192             if (width == 16)
193                 addCapability(CapabilityFloat16);
194             else if (width == 64)
195                 addCapability(CapabilityFloat64);
196         }
197         break;
198     }
199 }
200
201 // Called for each instruction that resides in a block.
202 void Builder::postProcess(Instruction& inst)
203 {
204     // Add capabilities based simply on the opcode.
205     switch (inst.getOpCode()) {
206     case OpExtInst:
207         switch (inst.getImmediateOperand(1)) {
208         case GLSLstd450InterpolateAtCentroid:
209         case GLSLstd450InterpolateAtSample:
210         case GLSLstd450InterpolateAtOffset:
211             addCapability(CapabilityInterpolationFunction);
212             break;
213         default:
214             break;
215         }
216         break;
217     case OpDPdxFine:
218     case OpDPdyFine:
219     case OpFwidthFine:
220     case OpDPdxCoarse:
221     case OpDPdyCoarse:
222     case OpFwidthCoarse:
223         addCapability(CapabilityDerivativeControl);
224         break;
225
226     case OpImageQueryLod:
227     case OpImageQuerySize:
228     case OpImageQuerySizeLod:
229     case OpImageQuerySamples:
230     case OpImageQueryLevels:
231         addCapability(CapabilityImageQuery);
232         break;
233
234     case OpGroupNonUniformPartitionNV:
235         addExtension(E_SPV_NV_shader_subgroup_partitioned);
236         addCapability(CapabilityGroupNonUniformPartitionedNV);
237         break;
238
239     case OpLoad:
240     case OpStore:
241         {
242             // For any load/store to a PhysicalStorageBufferEXT, walk the accesschain
243             // index list to compute the misalignment. The pre-existing alignment value
244             // (set via Builder::AccessChain::alignment) only accounts for the base of
245             // the reference type and any scalar component selection in the accesschain,
246             // and this function computes the rest from the SPIR-V Offset decorations.
247             Instruction *accessChain = module.getInstruction(inst.getIdOperand(0));
248             if (accessChain->getOpCode() == OpAccessChain) {
249                 Instruction *base = module.getInstruction(accessChain->getIdOperand(0));
250                 // Get the type of the base of the access chain. It must be a pointer type.
251                 Id typeId = base->getTypeId();
252                 Instruction *type = module.getInstruction(typeId);
253                 assert(type->getOpCode() == OpTypePointer);
254                 if (type->getImmediateOperand(0) != StorageClassPhysicalStorageBufferEXT) {
255                     break;
256                 }
257                 // Get the pointee type.
258                 typeId = type->getIdOperand(1);
259                 type = module.getInstruction(typeId);
260                 // Walk the index list for the access chain. For each index, find any
261                 // misalignment that can apply when accessing the member/element via
262                 // Offset/ArrayStride/MatrixStride decorations, and bitwise OR them all
263                 // together.
264                 int alignment = 0;
265                 for (int i = 1; i < accessChain->getNumOperands(); ++i) {
266                     Instruction *idx = module.getInstruction(accessChain->getIdOperand(i));
267                     if (type->getOpCode() == OpTypeStruct) {
268                         assert(idx->getOpCode() == OpConstant);
269                         unsigned int c = idx->getImmediateOperand(0);
270
271                         const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
272                             if (decoration.get()->getOpCode() == OpMemberDecorate &&
273                                 decoration.get()->getIdOperand(0) == typeId &&
274                                 decoration.get()->getImmediateOperand(1) == c &&
275                                 (decoration.get()->getImmediateOperand(2) == DecorationOffset ||
276                                  decoration.get()->getImmediateOperand(2) == DecorationMatrixStride)) {
277                                 alignment |= decoration.get()->getImmediateOperand(3);
278                             }
279                         };
280                         std::for_each(decorations.begin(), decorations.end(), function);
281                         // get the next member type
282                         typeId = type->getIdOperand(c);
283                         type = module.getInstruction(typeId);
284                     } else if (type->getOpCode() == OpTypeArray ||
285                                type->getOpCode() == OpTypeRuntimeArray) {
286                         const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
287                             if (decoration.get()->getOpCode() == OpDecorate &&
288                                 decoration.get()->getIdOperand(0) == typeId &&
289                                 decoration.get()->getImmediateOperand(1) == DecorationArrayStride) {
290                                 alignment |= decoration.get()->getImmediateOperand(2);
291                             }
292                         };
293                         std::for_each(decorations.begin(), decorations.end(), function);
294                         // Get the element type
295                         typeId = type->getIdOperand(0);
296                         type = module.getInstruction(typeId);
297                     } else {
298                         // Once we get to any non-aggregate type, we're done.
299                         break;
300                     }
301                 }
302                 assert(inst.getNumOperands() >= 3);
303                 unsigned int memoryAccess = inst.getImmediateOperand((inst.getOpCode() == OpStore) ? 2 : 1);
304                 assert(memoryAccess & MemoryAccessAlignedMask);
305                 static_cast<void>(memoryAccess);
306                 // Compute the index of the alignment operand.
307                 int alignmentIdx = 2;
308                 if (inst.getOpCode() == OpStore)
309                     alignmentIdx++;
310                 // Merge new and old (mis)alignment
311                 alignment |= inst.getImmediateOperand(alignmentIdx);
312                 // Pick the LSB
313                 alignment = alignment & ~(alignment & (alignment-1));
314                 // update the Aligned operand
315                 inst.setImmediateOperand(alignmentIdx, alignment);
316             }
317             break;
318         }
319
320     default:
321         break;
322     }
323
324     // Checks based on type
325     if (inst.getTypeId() != NoType)
326         postProcessType(inst, inst.getTypeId());
327     for (int op = 0; op < inst.getNumOperands(); ++op) {
328         if (inst.isIdOperand(op)) {
329             // In blocks, these are always result ids, but we are relying on
330             // getTypeId() to return NoType for things like OpLabel.
331             if (getTypeId(inst.getIdOperand(op)) != NoType)
332                 postProcessType(inst, getTypeId(inst.getIdOperand(op)));
333         }
334     }
335 }
336 #endif
337
338 // comment in header
339 void Builder::postProcessCFG()
340 {
341     // reachableBlocks is the set of blockss reached via control flow, or which are
342     // unreachable continue targert or unreachable merge.
343     std::unordered_set<const Block*> reachableBlocks;
344     std::unordered_map<Block*, Block*> headerForUnreachableContinue;
345     std::unordered_set<Block*> unreachableMerges;
346     std::unordered_set<Id> unreachableDefinitions;
347     // Collect IDs defined in unreachable blocks. For each function, label the
348     // reachable blocks first. Then for each unreachable block, collect the
349     // result IDs of the instructions in it.
350     for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
351         Function* f = *fi;
352         Block* entry = f->getEntryBlock();
353         inReadableOrder(entry,
354             [&reachableBlocks, &unreachableMerges, &headerForUnreachableContinue]
355             (Block* b, ReachReason why, Block* header) {
356                reachableBlocks.insert(b);
357                if (why == ReachDeadContinue) headerForUnreachableContinue[b] = header;
358                if (why == ReachDeadMerge) unreachableMerges.insert(b);
359             });
360         for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
361             Block* b = *bi;
362             if (unreachableMerges.count(b) != 0 || headerForUnreachableContinue.count(b) != 0) {
363                 auto ii = b->getInstructions().cbegin();
364                 ++ii; // Keep potential decorations on the label.
365                 for (; ii != b->getInstructions().cend(); ++ii)
366                     unreachableDefinitions.insert(ii->get()->getResultId());
367             } else if (reachableBlocks.count(b) == 0) {
368                 // The normal case for unreachable code.  All definitions are considered dead.
369                 for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ++ii)
370                     unreachableDefinitions.insert(ii->get()->getResultId());
371             }
372         }
373     }
374
375     // Modify unreachable merge blocks and unreachable continue targets.
376     // Delete their contents.
377     for (auto mergeIter = unreachableMerges.begin(); mergeIter != unreachableMerges.end(); ++mergeIter) {
378         (*mergeIter)->rewriteAsCanonicalUnreachableMerge();
379     }
380     for (auto continueIter = headerForUnreachableContinue.begin();
381          continueIter != headerForUnreachableContinue.end();
382          ++continueIter) {
383         Block* continue_target = continueIter->first;
384         Block* header = continueIter->second;
385         continue_target->rewriteAsCanonicalUnreachableContinue(header);
386     }
387
388     // Remove unneeded decorations, for unreachable instructions
389     decorations.erase(std::remove_if(decorations.begin(), decorations.end(),
390         [&unreachableDefinitions](std::unique_ptr<Instruction>& I) -> bool {
391             Id decoration_id = I.get()->getIdOperand(0);
392             return unreachableDefinitions.count(decoration_id) != 0;
393         }),
394         decorations.end());
395 }
396
397 #ifndef GLSLANG_WEB
398 // comment in header
399 void Builder::postProcessFeatures() {
400     // Add per-instruction capabilities, extensions, etc.,
401
402     // Look for any 8/16 bit type in physical storage buffer class, and set the
403     // appropriate capability. This happens in createSpvVariable for other storage
404     // classes, but there isn't always a variable for physical storage buffer.
405     for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
406         Instruction* type = groupedTypes[OpTypePointer][t];
407         if (type->getImmediateOperand(0) == (unsigned)StorageClassPhysicalStorageBufferEXT) {
408             if (containsType(type->getIdOperand(1), OpTypeInt, 8)) {
409                 addIncorporatedExtension(spv::E_SPV_KHR_8bit_storage, spv::Spv_1_5);
410                 addCapability(spv::CapabilityStorageBuffer8BitAccess);
411             }
412             if (containsType(type->getIdOperand(1), OpTypeInt, 16) ||
413                 containsType(type->getIdOperand(1), OpTypeFloat, 16)) {
414                 addIncorporatedExtension(spv::E_SPV_KHR_16bit_storage, spv::Spv_1_3);
415                 addCapability(spv::CapabilityStorageBuffer16BitAccess);
416             }
417         }
418     }
419
420     // process all block-contained instructions
421     for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
422         Function* f = *fi;
423         for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
424             Block* b = *bi;
425             for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ii++)
426                 postProcess(*ii->get());
427
428             // For all local variables that contain pointers to PhysicalStorageBufferEXT, check whether
429             // there is an existing restrict/aliased decoration. If we don't find one, add Aliased as the
430             // default.
431             for (auto vi = b->getLocalVariables().cbegin(); vi != b->getLocalVariables().cend(); vi++) {
432                 const Instruction& inst = *vi->get();
433                 Id resultId = inst.getResultId();
434                 if (containsPhysicalStorageBufferOrArray(getDerefTypeId(resultId))) {
435                     bool foundDecoration = false;
436                     const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
437                         if (decoration.get()->getIdOperand(0) == resultId &&
438                             decoration.get()->getOpCode() == OpDecorate &&
439                             (decoration.get()->getImmediateOperand(1) == spv::DecorationAliasedPointerEXT ||
440                              decoration.get()->getImmediateOperand(1) == spv::DecorationRestrictPointerEXT)) {
441                             foundDecoration = true;
442                         }
443                     };
444                     std::for_each(decorations.begin(), decorations.end(), function);
445                     if (!foundDecoration) {
446                         addDecoration(resultId, spv::DecorationAliasedPointerEXT);
447                     }
448                 }
449             }
450         }
451     }
452
453     // If any Vulkan memory model-specific functionality is used, update the
454     // OpMemoryModel to match.
455     if (capabilities.find(spv::CapabilityVulkanMemoryModelKHR) != capabilities.end()) {
456         memoryModel = spv::MemoryModelVulkanKHR;
457         addIncorporatedExtension(spv::E_SPV_KHR_vulkan_memory_model, spv::Spv_1_5);
458     }
459
460     // Add Aliased decoration if there's more than one Workgroup Block variable.
461     if (capabilities.find(spv::CapabilityWorkgroupMemoryExplicitLayoutKHR) != capabilities.end()) {
462         assert(entryPoints.size() == 1);
463         auto &ep = entryPoints[0];
464
465         std::vector<Id> workgroup_variables;
466         for (int i = 0; i < (int)ep->getNumOperands(); i++) {
467             if (!ep->isIdOperand(i))
468                 continue;
469
470             const Id id = ep->getIdOperand(i);
471             const Instruction *instr = module.getInstruction(id);
472             if (instr->getOpCode() != spv::OpVariable)
473                 continue;
474
475             if (instr->getImmediateOperand(0) == spv::StorageClassWorkgroup)
476                 workgroup_variables.push_back(id);
477         }
478
479         if (workgroup_variables.size() > 1) {
480             for (size_t i = 0; i < workgroup_variables.size(); i++)
481                 addDecoration(workgroup_variables[i], spv::DecorationAliased);
482         }
483     }
484 }
485 #endif
486
487 // comment in header
488 void Builder::postProcess() {
489   postProcessCFG();
490 #ifndef GLSLANG_WEB
491   postProcessFeatures();
492 #endif
493 }
494
495 }; // end spv namespace