04d594cb3ec9d379618dfae7b6296a9f49134f8c
[platform/upstream/glslang.git] / SPIRV / SpvPostProcess.cpp
1 //
2 // Copyright (C) 2018 Google, Inc.
3 //
4 // All rights reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions
8 // are met:
9 //
10 //    Redistributions of source code must retain the above copyright
11 //    notice, this list of conditions and the following disclaimer.
12 //
13 //    Redistributions in binary form must reproduce the above
14 //    copyright notice, this list of conditions and the following
15 //    disclaimer in the documentation and/or other materials provided
16 //    with the distribution.
17 //
18 //    Neither the name of 3Dlabs Inc. Ltd. nor the names of its
19 //    contributors may be used to endorse or promote products derived
20 //    from this software without specific prior written permission.
21 //
22 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26 // COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28 // BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29 // LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 // LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32 // ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 // POSSIBILITY OF SUCH DAMAGE.
34
35 //
36 // Post-processing for SPIR-V IR, in internal form, not standard binary form.
37 //
38
39 #include <cassert>
40 #include <cstdlib>
41
42 #include <unordered_set>
43 #include <algorithm>
44
45 #include "SpvBuilder.h"
46
47 #include "spirv.hpp"
48 #include "GlslangToSpv.h"
49 #include "SpvBuilder.h"
50 namespace spv {
51     #include "GLSL.std.450.h"
52     #include "GLSL.ext.KHR.h"
53     #include "GLSL.ext.EXT.h"
54 #ifdef AMD_EXTENSIONS
55     #include "GLSL.ext.AMD.h"
56 #endif
57 #ifdef NV_EXTENSIONS
58     #include "GLSL.ext.NV.h"
59 #endif
60 }
61
62 namespace spv {
63
64 // Hook to visit each operand type and result type of an instruction.
65 // Will be called multiple times for one instruction, once for each typed
66 // operand and the result.
67 void Builder::postProcessType(const Instruction& inst, Id typeId)
68 {
69     // Characterize the type being questioned
70     Id basicTypeOp = getMostBasicTypeClass(typeId);
71     int width = 0;
72     if (basicTypeOp == OpTypeFloat || basicTypeOp == OpTypeInt)
73         width = getScalarTypeWidth(typeId);
74
75     // Do opcode-specific checks
76     switch (inst.getOpCode()) {
77     case OpLoad:
78     case OpStore:
79         if (basicTypeOp == OpTypeStruct) {
80             if (containsType(typeId, OpTypeInt, 8))
81                 addCapability(CapabilityInt8);
82             if (containsType(typeId, OpTypeInt, 16))
83                 addCapability(CapabilityInt16);
84             if (containsType(typeId, OpTypeFloat, 16))
85                 addCapability(CapabilityFloat16);
86         } else {
87             StorageClass storageClass = getStorageClass(inst.getIdOperand(0));
88             if (width == 8) {
89                 switch (storageClass) {
90                 case StorageClassPhysicalStorageBufferEXT:
91                 case StorageClassUniform:
92                 case StorageClassStorageBuffer:
93                 case StorageClassPushConstant:
94                     break;
95                 default:
96                     addCapability(CapabilityInt8);
97                     break;
98                 }
99             } else if (width == 16) {
100                 switch (storageClass) {
101                 case StorageClassPhysicalStorageBufferEXT:
102                 case StorageClassUniform:
103                 case StorageClassStorageBuffer:
104                 case StorageClassPushConstant:
105                 case StorageClassInput:
106                 case StorageClassOutput:
107                     break;
108                 default:
109                     if (basicTypeOp == OpTypeInt)
110                         addCapability(CapabilityInt16);
111                     if (basicTypeOp == OpTypeFloat)
112                         addCapability(CapabilityFloat16);
113                     break;
114                 }
115             }
116         }
117         break;
118     case OpAccessChain:
119     case OpPtrAccessChain:
120     case OpCopyObject:
121     case OpFConvert:
122     case OpSConvert:
123     case OpUConvert:
124         break;
125     case OpExtInst:
126 #if AMD_EXTENSIONS
127         switch (inst.getImmediateOperand(1)) {
128         case GLSLstd450Frexp:
129         case GLSLstd450FrexpStruct:
130             if (getSpvVersion() < glslang::EShTargetSpv_1_3 && containsType(typeId, OpTypeInt, 16))
131                 addExtension(spv::E_SPV_AMD_gpu_shader_int16);
132             break;
133         case GLSLstd450InterpolateAtCentroid:
134         case GLSLstd450InterpolateAtSample:
135         case GLSLstd450InterpolateAtOffset:
136             if (getSpvVersion() < glslang::EShTargetSpv_1_3 && containsType(typeId, OpTypeFloat, 16))
137                 addExtension(spv::E_SPV_AMD_gpu_shader_half_float);
138             break;
139         default:
140             break;
141         }
142 #endif
143         break;
144     default:
145         if (basicTypeOp == OpTypeFloat && width == 16)
146             addCapability(CapabilityFloat16);
147         if (basicTypeOp == OpTypeInt && width == 16)
148             addCapability(CapabilityInt16);
149         if (basicTypeOp == OpTypeInt && width == 8)
150             addCapability(CapabilityInt8);
151         break;
152     }
153 }
154
155 // Called for each instruction that resides in a block.
156 void Builder::postProcess(Instruction& inst)
157 {
158     // Add capabilities based simply on the opcode.
159     switch (inst.getOpCode()) {
160     case OpExtInst:
161         switch (inst.getImmediateOperand(1)) {
162         case GLSLstd450InterpolateAtCentroid:
163         case GLSLstd450InterpolateAtSample:
164         case GLSLstd450InterpolateAtOffset:
165             addCapability(CapabilityInterpolationFunction);
166             break;
167         default:
168             break;
169         }
170         break;
171     case OpDPdxFine:
172     case OpDPdyFine:
173     case OpFwidthFine:
174     case OpDPdxCoarse:
175     case OpDPdyCoarse:
176     case OpFwidthCoarse:
177         addCapability(CapabilityDerivativeControl);
178         break;
179
180     case OpImageQueryLod:
181     case OpImageQuerySize:
182     case OpImageQuerySizeLod:
183     case OpImageQuerySamples:
184     case OpImageQueryLevels:
185         addCapability(CapabilityImageQuery);
186         break;
187
188 #ifdef NV_EXTENSIONS
189     case OpGroupNonUniformPartitionNV:
190         addExtension(E_SPV_NV_shader_subgroup_partitioned);
191         addCapability(CapabilityGroupNonUniformPartitionedNV);
192         break;
193 #endif
194
195     case OpLoad:
196     case OpStore:
197         {
198             // For any load/store to a PhysicalStorageBufferEXT, walk the accesschain
199             // index list to compute the misalignment. The pre-existing alignment value
200             // (set via Builder::AccessChain::alignment) only accounts for the base of
201             // the reference type and any scalar component selection in the accesschain,
202             // and this function computes the rest from the SPIR-V Offset decorations.
203             Instruction *accessChain = module.getInstruction(inst.getIdOperand(0));
204             if (accessChain->getOpCode() == OpAccessChain) {
205                 Instruction *base = module.getInstruction(accessChain->getIdOperand(0));
206                 // Get the type of the base of the access chain. It must be a pointer type.
207                 Id typeId = base->getTypeId();
208                 Instruction *type = module.getInstruction(typeId);
209                 assert(type->getOpCode() == OpTypePointer);
210                 if (type->getImmediateOperand(0) != StorageClassPhysicalStorageBufferEXT) {
211                     break;
212                 }
213                 // Get the pointee type.
214                 typeId = type->getIdOperand(1);
215                 type = module.getInstruction(typeId);
216                 // Walk the index list for the access chain. For each index, find any
217                 // misalignment that can apply when accessing the member/element via
218                 // Offset/ArrayStride/MatrixStride decorations, and bitwise OR them all
219                 // together.
220                 int alignment = 0;
221                 for (int i = 1; i < accessChain->getNumOperands(); ++i) {
222                     Instruction *idx = module.getInstruction(accessChain->getIdOperand(i));
223                     if (type->getOpCode() == OpTypeStruct) {
224                         assert(idx->getOpCode() == OpConstant);
225                         int c = idx->getImmediateOperand(0);
226
227                         const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
228                             if (decoration.get()->getOpCode() == OpMemberDecorate &&
229                                 decoration.get()->getIdOperand(0) == typeId &&
230                                 decoration.get()->getImmediateOperand(1) == c &&
231                                 (decoration.get()->getImmediateOperand(2) == DecorationOffset ||
232                                  decoration.get()->getImmediateOperand(2) == DecorationMatrixStride)) {
233                                 alignment |= decoration.get()->getImmediateOperand(3);
234                             }
235                         };
236                         std::for_each(decorations.begin(), decorations.end(), function);
237                         // get the next member type
238                         typeId = type->getIdOperand(c);
239                         type = module.getInstruction(typeId);
240                     } else if (type->getOpCode() == OpTypeArray ||
241                                type->getOpCode() == OpTypeRuntimeArray) {
242                         const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
243                             if (decoration.get()->getOpCode() == OpDecorate &&
244                                 decoration.get()->getIdOperand(0) == typeId &&
245                                 decoration.get()->getImmediateOperand(1) == DecorationArrayStride) {
246                                 alignment |= decoration.get()->getImmediateOperand(2);
247                             }
248                         };
249                         std::for_each(decorations.begin(), decorations.end(), function);
250                         // Get the element type
251                         typeId = type->getIdOperand(0);
252                         type = module.getInstruction(typeId);
253                     } else {
254                         // Once we get to any non-aggregate type, we're done.
255                         break;
256                     }
257                 }
258                 assert(inst.getNumOperands() >= 3);
259                 unsigned int memoryAccess = inst.getImmediateOperand((inst.getOpCode() == OpStore) ? 2 : 1);
260                 assert(memoryAccess & MemoryAccessAlignedMask);
261                 // Compute the index of the alignment operand.
262                 int alignmentIdx = 2;
263                 if (memoryAccess & MemoryAccessVolatileMask)
264                     alignmentIdx++;
265                 if (inst.getOpCode() == OpStore)
266                     alignmentIdx++;
267                 // Merge new and old (mis)alignment
268                 alignment |= inst.getImmediateOperand(alignmentIdx);
269                 // Pick the LSB
270                 alignment = alignment & ~(alignment & (alignment-1));
271                 // update the Aligned operand
272                 inst.setImmediateOperand(alignmentIdx, alignment);
273             }
274             break;
275         }
276
277     default:
278         break;
279     }
280
281     // Checks based on type
282     if (inst.getTypeId() != NoType)
283         postProcessType(inst, inst.getTypeId());
284     for (int op = 0; op < inst.getNumOperands(); ++op) {
285         if (inst.isIdOperand(op)) {
286             // In blocks, these are always result ids, but we are relying on
287             // getTypeId() to return NoType for things like OpLabel.
288             if (getTypeId(inst.getIdOperand(op)) != NoType)
289                 postProcessType(inst, getTypeId(inst.getIdOperand(op)));
290         }
291     }
292 }
293
294 // Called for each instruction in a reachable block.
295 void Builder::postProcessReachable(const Instruction&)
296 {
297     // did have code here, but questionable to do so without deleting the instructions
298 }
299
300 // comment in header
301 void Builder::postProcess()
302 {
303     std::unordered_set<const Block*> reachableBlocks;
304     std::unordered_set<Id> unreachableDefinitions;
305     // Collect IDs defined in unreachable blocks. For each function, label the
306     // reachable blocks first. Then for each unreachable block, collect the
307     // result IDs of the instructions in it.
308     for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
309         Function* f = *fi;
310         Block* entry = f->getEntryBlock();
311         inReadableOrder(entry, [&reachableBlocks](const Block* b) { reachableBlocks.insert(b); });
312         for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
313             Block* b = *bi;
314             if (reachableBlocks.count(b) == 0) {
315                 for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ii++)
316                     unreachableDefinitions.insert(ii->get()->getResultId());
317             }
318         }
319     }
320
321     // Remove unneeded decorations, for unreachable instructions
322     decorations.erase(std::remove_if(decorations.begin(), decorations.end(),
323         [&unreachableDefinitions](std::unique_ptr<Instruction>& I) -> bool {
324             Id decoration_id = I.get()->getIdOperand(0);
325             return unreachableDefinitions.count(decoration_id) != 0;
326         }),
327         decorations.end());
328
329     // Add per-instruction capabilities, extensions, etc.,
330
331     // process all reachable instructions...
332     for (auto bi = reachableBlocks.cbegin(); bi != reachableBlocks.cend(); ++bi) {
333         const Block* block = *bi;
334         const auto function = [this](const std::unique_ptr<Instruction>& inst) { postProcessReachable(*inst.get()); };
335         std::for_each(block->getInstructions().begin(), block->getInstructions().end(), function);
336     }
337
338     // process all block-contained instructions
339     for (auto fi = module.getFunctions().cbegin(); fi != module.getFunctions().cend(); fi++) {
340         Function* f = *fi;
341         for (auto bi = f->getBlocks().cbegin(); bi != f->getBlocks().cend(); bi++) {
342             Block* b = *bi;
343             for (auto ii = b->getInstructions().cbegin(); ii != b->getInstructions().cend(); ii++)
344                 postProcess(*ii->get());
345
346             // For all local variables that contain pointers to PhysicalStorageBufferEXT, check whether
347             // there is an existing restrict/aliased decoration. If we don't find one, add Aliased as the
348             // default.
349             for (auto vi = b->getLocalVariables().cbegin(); vi != b->getLocalVariables().cend(); vi++) {
350                 const Instruction& inst = *vi->get();
351                 Id resultId = inst.getResultId();
352                 if (containsPhysicalStorageBufferOrArray(getDerefTypeId(resultId))) {
353                     bool foundDecoration = false;
354                     const auto function = [&](const std::unique_ptr<Instruction>& decoration) {
355                         if (decoration.get()->getIdOperand(0) == resultId &&
356                             decoration.get()->getOpCode() == OpDecorate &&
357                             (decoration.get()->getImmediateOperand(1) == spv::DecorationAliasedPointerEXT ||
358                              decoration.get()->getImmediateOperand(1) == spv::DecorationRestrictPointerEXT)) {
359                             foundDecoration = true;
360                         }
361                     };
362                     std::for_each(decorations.begin(), decorations.end(), function);
363                     if (!foundDecoration) {
364                         addDecoration(resultId, spv::DecorationAliasedPointerEXT);
365                     }
366                 }
367             }
368         }
369     }
370
371     // Look for any 8/16 bit type in physical storage buffer class, and set the
372     // appropriate capability. This happens in createSpvVariable for other storage
373     // classes, but there isn't always a variable for physical storage buffer.
374     for (int t = 0; t < (int)groupedTypes[OpTypePointer].size(); ++t) {
375         Instruction* type = groupedTypes[OpTypePointer][t];
376         if (type->getImmediateOperand(0) == (unsigned)StorageClassPhysicalStorageBufferEXT) {
377             if (containsType(type->getIdOperand(1), OpTypeInt, 8)) {
378                 addExtension(spv::E_SPV_KHR_8bit_storage);
379                 addCapability(spv::CapabilityStorageBuffer8BitAccess);
380             }
381             if (containsType(type->getIdOperand(1), OpTypeInt, 16) ||
382                 containsType(type->getIdOperand(1), OpTypeFloat, 16)) {
383                 addExtension(spv::E_SPV_KHR_16bit_storage);
384                 addCapability(spv::CapabilityStorageBuffer16BitAccess);
385             }
386         }
387     }
388 }
389
390 }; // end spv namespace