Merge remote-tracking branch 'upstream/master'
[platform/upstream/glslang.git] / README.md
1 Also see the Khronos landing page for glslang as a reference front end:
2
3 https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/
4
5 The above page includes where to get binaries, and is kept up to date
6 regarding the feature level of glslang.
7
8 glslang
9 =======
10
11 [![Build Status](https://travis-ci.org/KhronosGroup/glslang.svg?branch=master)](https://travis-ci.org/KhronosGroup/glslang)
12 [![Build status](https://ci.appveyor.com/api/projects/status/q6fi9cb0qnhkla68/branch/master?svg=true)](https://ci.appveyor.com/project/Khronoswebmaster/glslang/branch/master)
13
14 An OpenGL and OpenGL ES shader front end and validator.
15
16 There are two components:
17
18 1. A front-end library for programmatic parsing of GLSL/ESSL into an AST.
19
20 2. A standalone wrapper, `glslangValidator`, that can be used as a shader
21    validation tool.
22
23 How to add a feature protected by a version/extension/stage/profile:  See the
24 comment in `glslang/MachineIndependent/Versions.cpp`.
25
26 Tasks waiting to be done are documented as GitHub issues.
27
28 Execution of Standalone Wrapper
29 -------------------------------
30
31 To use the standalone binary form, execute `glslangValidator`, and it will print
32 a usage statement.  Basic operation is to give it a file containing a shader,
33 and it will print out warnings/errors and optionally an AST.
34
35 The applied stage-specific rules are based on the file extension:
36 * `.vert` for a vertex shader
37 * `.tesc` for a tessellation control shader
38 * `.tese` for a tessellation evaluation shader
39 * `.geom` for a geometry shader
40 * `.frag` for a fragment shader
41 * `.comp` for a compute shader
42
43 There is also a non-shader extension
44 * `.conf` for a configuration file of limits, see usage statement for example
45
46 Building
47 --------
48
49 ### Dependencies
50
51 * [CMake][cmake]: for generating compilation targets.
52 * [bison][bison]: _optional_, but needed when changing the grammar (glslang.y).
53 * [googletest][googletest]: _optional_, but should use if making any changes to glslang.
54
55 ### Build steps
56
57 #### 1) Check-Out External Projects
58
59 ```bash
60 cd <the directory glslang was cloned to, External will be a subdirectory>
61 git clone https://github.com/google/googletest.git External/googletest
62 ```
63
64 #### 2) Configure
65
66 Assume the source directory is `$SOURCE_DIR` and
67 the build directory is `$BUILD_DIR`:
68
69 For building on Linux (assuming using the Ninja generator):
70
71 ```bash
72 cd $BUILD_DIR
73
74 cmake -GNinja -DCMAKE_BUILD_TYPE={Debug|Release|RelWithDebInfo} \
75       -DCMAKE_INSTALL_PREFIX=`pwd`/install $SOURCE_DIR
76 ```
77
78 For building on Windows:
79
80 ```bash
81 cmake $SOURCE_DIR -DCMAKE_INSTALL_PREFIX=`pwd`/install
82 # The CMAKE_INSTALL_PREFIX part is for testing (explained later).
83 ```
84
85 The CMake GUI also works for Windows (version 3.4.1 tested).
86
87 #### 3) Build and Install
88
89 ```bash
90 # for Linux:
91 ninja install
92
93 # for Windows:
94 cmake --build . --config {Release|Debug|MinSizeRel|RelWithDebInfo} \
95       --target install
96 ```
97
98 If using MSVC, after running CMake to configure, use the
99 Configuration Manager to check the `INSTALL` project.
100
101 ### If you need to change the GLSL grammar
102
103 The grammar in `glslang/MachineIndependent/glslang.y` has to be recompiled with
104 bison if it changes, the output files are committed to the repo to avoid every
105 developer needing to have bison configured to compile the project when grammar
106 changes are quite infrequent. For windows you can get binaries from
107 [GnuWin32][bison-gnu-win32].
108
109 The command to rebuild is:
110
111 ```bash
112 bison --defines=MachineIndependent/glslang_tab.cpp.h
113       -t MachineIndependent/glslang.y
114       -o MachineIndependent/glslang_tab.cpp
115 ```
116
117 The above command is also available in the bash script at
118 `glslang/updateGrammar`.
119
120 Testing
121 -------
122
123 Right now, there are two test harnesses existing in glslang: one is [Google
124 Test](gtests/), one is the [`runtests` script](Test/runtests). The former
125 runs unit tests and single-shader single-threaded integration tests, while
126 the latter runs multiple-shader linking tests and multi-threaded tests.
127
128 ### Running tests
129
130 The [`runtests` script](Test/runtests) requires compiled binaries to be
131 installed into `$BUILD_DIR/install`. Please make sure you have supplied the
132 correct configuration to CMake (using `-DCMAKE_INSTALL_PREFIX`) when building;
133 otherwise, you may want to modify the path in the `runtests` script.
134
135 Running Google Test-backed tests:
136
137 ```bash
138 cd $BUILD_DIR
139
140 # for Linux:
141 ctest
142
143 # for Windows:
144 ctest -C {Debug|Release|RelWithDebInfo|MinSizeRel}
145
146 # or, run the test binary directly
147 # (which gives more fine-grained control like filtering):
148 <dir-to-glslangtests-in-build-dir>/glslangtests
149 ```
150
151 Running `runtests` script-backed tests:
152
153 ```bash
154 cd $SOURCE_DIR/Test && ./runtests
155 ```
156
157 ### Contributing tests
158
159 Test results should always be included with a pull request that modifies
160 functionality.
161
162 If you are writing unit tests, please use the Google Test framework and
163 place the tests under the `gtests/` directory.
164
165 Integration tests are placed in the `Test/` directory. It contains test input
166 and a subdirectory `baseResults/` that contains the expected results of the
167 tests.  Both the tests and `baseResults/` are under source-code control.
168
169 Google Test runs those integration tests by reading the test input, compiling
170 them, and then compare against the expected results in `baseResults/`. The
171 integration tests to run via Google Test is registered in various
172 `gtests/*.FromFile.cpp` source files. `glslangtests` provides a command-line
173 option `--update-mode`, which, if supplied, will overwrite the golden files
174 under the `baseResults/` directory with real output from that invocation.
175 For more information, please check `gtests/` directory's
176 [README](gtests/README.md).
177
178 For the `runtests` script, it will generate current results in the
179 `localResults/` directory and `diff` them against the `baseResults/`.
180 When you want to update the tracked test results, they need to be
181 copied from `localResults/` to `baseResults/`.  This can be done by
182 the `bump` shell script.
183
184 You can add your own private list of tests, not tracked publicly, by using
185 `localtestlist` to list non-tracked tests.  This is automatically read
186 by `runtests` and included in the `diff` and `bump` process.
187
188 Programmatic Interfaces
189 -----------------------
190
191 Another piece of software can programmatically translate shaders to an AST
192 using one of two different interfaces:
193 * A new C++ class-oriented interface, or
194 * The original C functional interface
195
196 The `main()` in `StandAlone/StandAlone.cpp` shows examples using both styles.
197
198 ### C++ Class Interface (new, preferred)
199
200 This interface is in roughly the last 1/3 of `ShaderLang.h`.  It is in the
201 glslang namespace and contains the following.
202
203 ```cxx
204 const char* GetEsslVersionString();
205 const char* GetGlslVersionString();
206 bool InitializeProcess();
207 void FinalizeProcess();
208
209 class TShader
210     bool parse(...);
211     void setStrings(...);
212     const char* getInfoLog();
213
214 class TProgram
215     void addShader(...);
216     bool link(...);
217     const char* getInfoLog();
218     Reflection queries
219 ```
220
221 See `ShaderLang.h` and the usage of it in `StandAlone/StandAlone.cpp` for more
222 details.
223
224 ### C Functional Interface (orignal)
225
226 This interface is in roughly the first 2/3 of `ShaderLang.h`, and referred to
227 as the `Sh*()` interface, as all the entry points start `Sh`.
228
229 The `Sh*()` interface takes a "compiler" call-back object, which it calls after
230 building call back that is passed the AST and can then execute a backend on it.
231
232 The following is a simplified resulting run-time call stack:
233
234 ```c
235 ShCompile(shader, compiler) -> compiler(AST) -> <back end>
236 ```
237
238 In practice, `ShCompile()` takes shader strings, default version, and
239 warning/error and other options for controlling compilation.
240
241 Basic Internal Operation
242 ------------------------
243
244 * Initial lexical analysis is done by the preprocessor in
245   `MachineIndependent/Preprocessor`, and then refined by a GLSL scanner
246   in `MachineIndependent/Scan.cpp`.  There is currently no use of flex.
247
248 * Code is parsed using bison on `MachineIndependent/glslang.y` with the
249   aid of a symbol table and an AST.  The symbol table is not passed on to
250   the back-end; the intermediate representation stands on its own.
251   The tree is built by the grammar productions, many of which are
252   offloaded into `ParseHelper.cpp`, and by `Intermediate.cpp`.
253
254 * The intermediate representation is very high-level, and represented
255   as an in-memory tree.   This serves to lose no information from the
256   original program, and to have efficient transfer of the result from
257   parsing to the back-end.  In the AST, constants are propogated and
258   folded, and a very small amount of dead code is eliminated.
259
260   To aid linking and reflection, the last top-level branch in the AST
261   lists all global symbols.
262
263 * The primary algorithm of the back-end compiler is to traverse the
264   tree (high-level intermediate representation), and create an internal
265   object code representation.  There is an example of how to do this
266   in `MachineIndependent/intermOut.cpp`.
267
268 * Reduction of the tree to a linear byte-code style low-level intermediate
269   representation is likely a good way to generate fully optimized code.
270
271 * There is currently some dead old-style linker-type code still lying around.
272
273 * Memory pool: parsing uses types derived from C++ `std` types, using a
274   custom allocator that puts them in a memory pool.  This makes allocation
275   of individual container/contents just few cycles and deallocation free.
276   This pool is popped after the AST is made and processed.
277
278   The use is simple: if you are going to call `new`, there are three cases:
279
280   - the object comes from the pool (its base class has the macro
281     `POOL_ALLOCATOR_NEW_DELETE` in it) and you do not have to call `delete`
282
283   - it is a `TString`, in which case call `NewPoolTString()`, which gets
284     it from the pool, and there is no corresponding `delete`
285
286   - the object does not come from the pool, and you have to do normal
287     C++ memory management of what you `new`
288
289
290 [cmake]: https://cmake.org/
291 [bison]: https://www.gnu.org/software/bison/
292 [googletest]: https://github.com/google/googletest
293 [bison-gnu-win32]: http://gnuwin32.sourceforge.net/packages/bison.htm