Bison: Non-functional: Move to revision 3.0.4.
[platform/upstream/glslang.git] / README.md
1 Also see the Khronos landing page for glslang as a reference front end:
2
3 https://www.khronos.org/opengles/sdk/tools/Reference-Compiler/
4
5 The above page includes where to get binaries, and is kept up to date
6 regarding the feature level of glslang.
7
8 glslang
9 =======
10
11 [![Build Status](https://travis-ci.org/KhronosGroup/glslang.svg?branch=master)](https://travis-ci.org/KhronosGroup/glslang)
12
13 An OpenGL and OpenGL ES shader front end and validator.
14
15 There are two components:
16
17 1. A front-end library for programmatic parsing of GLSL/ESSL into an AST.
18
19 2. A standalone wrapper, `glslangValidator`, that can be used as a shader
20    validation tool.
21
22 How to add a feature protected by a version/extension/stage/profile:  See the
23 comment in `glslang/MachineIndependent/Versions.cpp`.
24
25 Things left to do:  See `Todo.txt`
26
27 Execution of Standalone Wrapper
28 -------------------------------
29
30 To use the standalone binary form, execute `glslangValidator`, and it will print
31 a usage statement.  Basic operation is to give it a file containing a shader,
32 and it will print out warnings/errors and optionally an AST.
33
34 The applied stage-specific rules are based on the file extension:
35 * `.vert` for a vertex shader
36 * `.tesc` for a tessellation control shader
37 * `.tese` for a tessellation evaluation shader
38 * `.geom` for a geometry shader
39 * `.frag` for a fragment shader
40 * `.comp` for a compute shader
41
42 There is also a non-shader extension
43 * `.conf` for a configuration file of limits, see usage statement for example
44
45 Building
46 --------
47
48 CMake: The currently maintained and preferred way of building is through CMake.
49 In MSVC, after running CMake, you may need to use the Configuration Manager to
50 check the INSTALL project.
51
52 The grammar in glslang/MachineIndependent/glslang.y has to be recompiled with
53 bison if it changes, the output files are committed to the repo to avoid every
54 developer needing to have bison configured to compile the project when grammar
55 changes are quite infrequent. For windows you can get binaries from
56 [GnuWin32](http://gnuwin32.sourceforge.net/packages/bison.htm).
57
58 The command to rebuild is:
59
60 ```
61 bison --defines=MachineIndependent/glslang_tab.cpp.h
62       -t MachineIndependent/glslang.y
63       -o MachineIndependent/glslang_tab.cpp
64 ```
65
66 The above command is also available in the bash script at:
67
68 ```
69 glslang/updateGrammar
70 ```
71
72 Glslang is adding the ability to test with
73 [Google Test](https://github.com/google/googletest) framework. If you want to
74 build and run those tests, please make sure you have a copy of Google Tests
75 checked out in the `External/` directory:
76 `git clone https://github.com/google/googletest.git`.
77
78 Programmatic Interfaces
79 -----------------------
80
81 Another piece of software can programmatically translate shaders to an AST
82 using one of two different interfaces:
83 * A new C++ class-oriented interface, or
84 * The original C functional interface
85
86 The `main()` in `StandAlone/StandAlone.cpp` shows examples using both styles.
87
88 ### C++ Class Interface (new, preferred)
89
90 This interface is in roughly the last 1/3 of `ShaderLang.h`.  It is in the
91 glslang namespace and contains the following.
92
93 ```cxx
94 const char* GetEsslVersionString();
95 const char* GetGlslVersionString();
96 bool InitializeProcess();
97 void FinalizeProcess();
98
99 class TShader
100     bool parse(...);
101     void setStrings(...);
102     const char* getInfoLog();
103
104 class TProgram
105     void addShader(...);
106     bool link(...);
107     const char* getInfoLog();
108     Reflection queries
109 ```
110
111 See `ShaderLang.h` and the usage of it in `StandAlone/StandAlone.cpp` for more
112 details.
113
114 ### C Functional Interface (orignal)
115
116 This interface is in roughly the first 2/3 of `ShaderLang.h`, and referred to
117 as the `Sh*()` interface, as all the entry points start `Sh`.
118
119 The `Sh*()` interface takes a "compiler" call-back object, which it calls after
120 building call back that is passed the AST and can then execute a backend on it.
121
122 The following is a simplified resulting run-time call stack:
123
124 ```c
125 ShCompile(shader, compiler) -> compiler(AST) -> <back end>
126 ```
127
128 In practice, `ShCompile()` takes shader strings, default version, and
129 warning/error and other options for controlling compilation.
130
131 Testing
132 -------
133
134 Test results should always be included with a pull request that modifies
135 functionality. And since glslang added the ability to test with
136 [Google Test](https://github.com/google/googletest) framework,
137 please write your new tests using Google Test.
138
139 The old (deprecated) testing process is:
140
141 `Test` is an active test directory that contains test input and a
142 subdirectory `baseResults` that contains the expected results of the
143 tests.  Both the tests and `baseResults` are under source-code control.
144 Executing the script `./runtests` will generate current results in
145 the `localResults` directory and `diff` them against the `baseResults`.
146
147 When you want to update the tracked test results, they need to be
148 copied from `localResults` to `baseResults`.  This can be done by
149 the `bump` shell script.
150
151 The list of files tested comes from `testlist`, and lists input shaders
152 in this directory, which must all be public for this to work.  However,
153 you can add your own private list of tests, not tracked here, by using
154 `localtestlist` to list non-tracked tests.  This is automatically read
155 by `runtests` and included in the `diff` and `bump` process.
156
157 Basic Internal Operation
158 ------------------------
159
160 * Initial lexical analysis is done by the preprocessor in
161   `MachineIndependent/Preprocessor`, and then refined by a GLSL scanner
162   in `MachineIndependent/Scan.cpp`.  There is currently no use of flex.
163
164 * Code is parsed using bison on `MachineIndependent/glslang.y` with the
165   aid of a symbol table and an AST.  The symbol table is not passed on to
166   the back-end; the intermediate representation stands on its own.
167   The tree is built by the grammar productions, many of which are
168   offloaded into `ParseHelper.cpp`, and by `Intermediate.cpp`.
169
170 * The intermediate representation is very high-level, and represented
171   as an in-memory tree.   This serves to lose no information from the
172   original program, and to have efficient transfer of the result from
173   parsing to the back-end.  In the AST, constants are propogated and
174   folded, and a very small amount of dead code is eliminated.
175
176   To aid linking and reflection, the last top-level branch in the AST
177   lists all global symbols.
178
179 * The primary algorithm of the back-end compiler is to traverse the
180   tree (high-level intermediate representation), and create an internal
181   object code representation.  There is an example of how to do this
182   in `MachineIndependent/intermOut.cpp`.
183
184 * Reduction of the tree to a linear byte-code style low-level intermediate
185   representation is likely a good way to generate fully optimized code.
186
187 * There is currently some dead old-style linker-type code still lying around.
188
189 * Memory pool: parsing uses types derived from C++ `std` types, using a
190   custom allocator that puts them in a memory pool.  This makes allocation
191   of individual container/contents just few cycles and deallocation free.
192   This pool is popped after the AST is made and processed.
193
194   The use is simple: if you are going to call `new`, there are three cases:
195
196   - the object comes from the pool (its base class has the macro
197     `POOL_ALLOCATOR_NEW_DELETE` in it) and you do not have to call `delete`
198
199   - it is a `TString`, in which case call `NewPoolTString()`, which gets
200     it from the pool, and there is no corresponding `delete`
201
202   - the object does not come from the pool, and you have to do normal
203     C++ memory management of what you `new`