doxygen use sections
[platform/upstream/libwebsockets.git] / README.coding.md
1 Notes about coding with lws
2 ===========================
3
4 @section dae Daemonization
5
6 There's a helper api `lws_daemonize` built by default that does everything you
7 need to daemonize well, including creating a lock file.  If you're making
8 what's basically a daemon, just call this early in your init to fork to a
9 headless background process and exit the starting process.
10
11 Notice stdout, stderr, stdin are all redirected to /dev/null to enforce your
12 daemon is headless, so you'll need to sort out alternative logging, by, eg,
13 syslog.
14
15
16 @section conns Maximum number of connections
17
18 The maximum number of connections the library can deal with is decided when
19 it starts by querying the OS to find out how many file descriptors it is
20 allowed to open (1024 on Fedora for example).  It then allocates arrays that
21 allow up to that many connections, minus whatever other file descriptors are
22 in use by the user code.
23
24 If you want to restrict that allocation, or increase it, you can use ulimit or
25 similar to change the avaiable number of file descriptors, and when restarted
26 **libwebsockets** will adapt accordingly.
27
28
29 @section evtloop Libwebsockets is singlethreaded
30
31 Libwebsockets works in a serialized event loop, in a single thread.
32
33 Directly performing websocket actions from other threads is not allowed.
34 Aside from the internal data being inconsistent in `forked()` processes,
35 the scope of a `wsi` (`struct websocket`) can end at any time during service
36 with the socket closing and the `wsi` freed.
37
38 Websocket write activities should only take place in the
39 `LWS_CALLBACK_SERVER_WRITEABLE` callback as described below.
40
41 [This network-programming necessity to link the issue of new data to
42 the peer taking the previous data is not obvious to all users so let's
43 repeat that in other words:
44
45 ***ONLY DO LWS_WRITE FROM THE WRITEABLE CALLBACK***
46
47 There is another network-programming truism that surprises some people which
48 is if the sink for the data cannot accept more:
49
50 ***YOU MUST PERFORM RX FLOW CONTROL***
51
52 See the mirror protocol implementations for example code.
53
54 Only live connections appear in the user callbacks, so this removes any
55 possibility of trying to used closed and freed wsis.
56
57 If you need to service other socket or file descriptors as well as the
58 websocket ones, you can combine them together with the websocket ones
59 in one poll loop, see "External Polling Loop support" below, and
60 still do it all in one thread / process context.
61
62 If you insist on trying to use it from multiple threads, take special care if
63 you might simultaneously create more than one context from different threads.
64
65 SSL_library_init() is called from the context create api and it also is not
66 reentrant.  So at least create the contexts sequentially.
67
68
69 @section writeable Only send data when socket writeable
70
71 You should only send data on a websocket connection from the user callback
72 `LWS_CALLBACK_SERVER_WRITEABLE` (or `LWS_CALLBACK_CLIENT_WRITEABLE` for
73 clients).
74
75 If you want to send something, do not just send it but request a callback
76 when the socket is writeable using
77
78  - `lws_callback_on_writable(context, wsi)` for a specific `wsi`, or
79  
80  - `lws_callback_on_writable_all_protocol(protocol)` for all connections
81 using that protocol to get a callback when next writeable.
82
83 Usually you will get called back immediately next time around the service
84 loop, but if your peer is slow or temporarily inactive the callback will be
85 delayed accordingly.  Generating what to write and sending it should be done
86 in the ...WRITEABLE callback.
87
88 See the test server code for an example of how to do this.
89
90
91 @section otherwr Do not rely on only your own WRITEABLE requests appearing
92
93 Libwebsockets may generate additional `LWS_CALLBACK_CLIENT_WRITEABLE` events
94 if it met network conditions where it had to buffer your send data internally.
95
96 So your code for `LWS_CALLBACK_CLIENT_WRITEABLE` needs to own the decision
97 about what to send, it can't assume that just because the writeable callback
98 came it really is time to send something.
99
100 It's quite possible you get an 'extra' writeable callback at any time and
101 just need to `return 0` and wait for the expected callback later.
102
103
104 @section closing Closing connections from the user side
105
106 When you want to close a connection, you do it by returning `-1` from a
107 callback for that connection.
108
109 You can provoke a callback by calling `lws_callback_on_writable` on
110 the wsi, then notice in the callback you want to close it and just return -1.
111 But usually, the decision to close is made in a callback already and returning
112 -1 is simple.
113
114 If the socket knows the connection is dead, because the peer closed or there
115 was an affirmitive network error like a FIN coming, then **libwebsockets**  will
116 take care of closing the connection automatically.
117
118 If you have a silently dead connection, it's possible to enter a state where
119 the send pipe on the connection is choked but no ack will ever come, so the
120 dead connection will never become writeable.  To cover that, you can use TCP
121 keepalives (see later in this document) or pings.
122
123
124 @section frags Fragmented messages
125
126 To support fragmented messages you need to check for the final
127 frame of a message with `lws_is_final_fragment`. This
128 check can be combined with `libwebsockets_remaining_packet_payload`
129 to gather the whole contents of a message, eg:
130
131 ```
132             case LWS_CALLBACK_RECEIVE:
133             {
134                 Client * const client = (Client *)user;
135                 const size_t remaining = lws_remaining_packet_payload(wsi);
136         
137                 if (!remaining && lws_is_final_fragment(wsi)) {
138                     if (client->HasFragments()) {
139                         client->AppendMessageFragment(in, len, 0);
140                         in = (void *)client->GetMessage();
141                         len = client->GetMessageLength();
142                     }
143         
144                     client->ProcessMessage((char *)in, len, wsi);
145                     client->ResetMessage();
146                 } else
147                     client->AppendMessageFragment(in, len, remaining);
148             }
149             break;
150 ```
151
152 The test app libwebsockets-test-fraggle sources also show how to
153 deal with fragmented messages.
154
155
156 @section debuglog Debug Logging
157
158 Also using `lws_set_log_level` api you may provide a custom callback to actually
159 emit the log string.  By default, this points to an internal emit function
160 that sends to stderr.  Setting it to `NULL` leaves it as it is instead.
161
162 A helper function `lwsl_emit_syslog()` is exported from the library to simplify
163 logging to syslog.  You still need to use `setlogmask`, `openlog` and `closelog`
164 in your user code.
165
166 The logging apis are made available for user code.
167
168 - `lwsl_err(...)`
169 - `lwsl_warn(...)`
170 - `lwsl_notice(...)`
171 - `lwsl_info(...)`
172 - `lwsl_debug(...)`
173
174 The difference between notice and info is that notice will be logged by default
175 whereas info is ignored by default.
176
177 If you are not building with _DEBUG defined, ie, without this
178
179 ```
180         $ cmake .. -DCMAKE_BUILD_TYPE=DEBUG
181 ```
182
183 then log levels below notice do not actually get compiled in.
184
185
186
187 @section extpoll External Polling Loop support
188
189 **libwebsockets** maintains an internal `poll()` array for all of its
190 sockets, but you can instead integrate the sockets into an
191 external polling array.  That's needed if **libwebsockets** will
192 cooperate with an existing poll array maintained by another
193 server.
194
195 Four callbacks `LWS_CALLBACK_ADD_POLL_FD`, `LWS_CALLBACK_DEL_POLL_FD`,
196 `LWS_CALLBACK_SET_MODE_POLL_FD` and `LWS_CALLBACK_CLEAR_MODE_POLL_FD`
197 appear in the callback for protocol 0 and allow interface code to
198 manage socket descriptors in other poll loops.
199
200 You can pass all pollfds that need service to `lws_service_fd()`, even
201 if the socket or file does not belong to **libwebsockets** it is safe.
202
203 If **libwebsocket** handled it, it zeros the pollfd `revents` field before returning.
204 So you can let **libwebsockets** try and if `pollfd->revents` is nonzero on return,
205 you know it needs handling by your code.
206
207 Also note that when integrating a foreign event loop like libev or libuv where
208 it doesn't natively use poll() semantics, and you must return a fake pollfd
209 reflecting the real event:
210
211  - be sure you set .events to .revents value as well in the synthesized pollfd
212
213  - check the built-in support for the event loop if possible (eg, ./lib/libuv.c)
214    to see how it interfaces to lws
215    
216  - use LWS_POLLHUP / LWS_POLLIN / LWS_POLLOUT from libwebsockets.h to avoid
217    losing windows compatibility
218
219
220 @section cpp Using with in c++ apps
221
222 The library is ready for use by C++ apps.  You can get started quickly by
223 copying the test server
224
225 ```
226         $ cp test-server/test-server.c test.cpp
227 ```
228
229 and building it in C++ like this
230
231 ```
232         $ g++ -DINSTALL_DATADIR=\"/usr/share\" -ocpptest test.cpp -lwebsockets
233 ```
234
235 `INSTALL_DATADIR` is only needed because the test server uses it as shipped, if
236 you remove the references to it in your app you don't need to define it on
237 the g++ line either.
238
239
240 @section headerinfo Availability of header information
241
242 HTTP Header information is managed by a pool of "ah" structs.  These are a
243 limited resource so there is pressure to free the headers and return the ah to
244 the pool for reuse.
245
246 For that reason header information on HTTP connections that get upgraded to
247 websockets is lost after the ESTABLISHED callback.  Anything important that
248 isn't processed by user code before then should be copied out for later.
249
250 For HTTP connections that don't upgrade, header info remains available the
251 whole time.
252
253
254 @section ka TCP Keepalive
255
256 It is possible for a connection which is not being used to send to die
257 silently somewhere between the peer and the side not sending.  In this case
258 by default TCP will just not report anything and you will never get any more
259 incoming data or sign the link is dead until you try to send.
260
261 To deal with getting a notification of that situation, you can choose to
262 enable TCP keepalives on all **libwebsockets** sockets, when you create the
263 context.
264
265 To enable keepalive, set the ka_time member of the context creation parameter
266 struct to a nonzero value (in seconds) at context creation time.  You should
267 also fill ka_probes and ka_interval in that case.
268
269 With keepalive enabled, the TCP layer will send control packets that should
270 stimulate a response from the peer without affecting link traffic.  If the
271 response is not coming, the socket will announce an error at `poll()` forcing
272 a close.
273
274 Note that BSDs don't support keepalive time / probes / interval per-socket
275 like Linux does.  On those systems you can enable keepalive by a nonzero
276 value in `ka_time`, but the systemwide kernel settings for the time / probes/
277 interval are used, regardless of what nonzero value is in `ka_time`.
278
279
280 @section sslopt Optimizing SSL connections
281
282 There's a member `ssl_cipher_list` in the `lws_context_creation_info` struct
283 which allows the user code to restrict the possible cipher selection at
284 context-creation time.
285
286 You might want to look into that to stop the ssl peers selecting a cipher which
287 is too computationally expensive.  To use it, point it to a string like
288
289         `"RC4-MD5:RC4-SHA:AES128-SHA:AES256-SHA:HIGH:!DSS:!aNULL"`
290
291 if left `NULL`, then the "DEFAULT" set of ciphers are all possible to select.
292
293 You can also set it to `"ALL"` to allow everything (including insecure ciphers).
294
295
296 @section clientasync Async nature of client connections
297
298 When you call `lws_client_connect_info(..)` and get a `wsi` back, it does not
299 mean your connection is active.  It just means it started trying to connect.
300
301 Your client connection is actually active only when you receive
302 `LWS_CALLBACK_CLIENT_ESTABLISHED` for it.
303
304 There's a 5 second timeout for the connection, and it may give up or die for
305 other reasons, if any of that happens you'll get a
306 `LWS_CALLBACK_CLIENT_CONNECTION_ERROR` callback on protocol 0 instead for the
307 `wsi`.
308
309 After attempting the connection and getting back a non-`NULL` `wsi` you should
310 loop calling `lws_service()` until one of the above callbacks occurs.
311
312 As usual, see [test-client.c](test-server/test-client.c) for example code.
313
314 Notice that the client connection api tries to progress the connection
315 somewhat before returning.  That means it's possible to get callbacks like
316 CONNECTION_ERROR on the new connection before your user code had a chance to
317 get the wsi returned to identify it (in fact if the connection did fail early,
318 NULL will be returned instead of the wsi anyway).
319
320 To avoid that problem, you can fill in `pwsi` in the client connection info
321 struct to point to a struct lws that get filled in early by the client
322 connection api with the related wsi.  You can then check for that in the
323 callback to confirm the identity of the failing client connection.
324
325
326 @section fileapi Lws platform-independent file access apis
327
328 lws now exposes his internal platform file abstraction in a way that can be
329 both used by user code to make it platform-agnostic, and be overridden or
330 subclassed by user code.  This allows things like handling the URI "directory
331 space" as a virtual filesystem that may or may not be backed by a regular
332 filesystem.  One example use is serving files from inside large compressed
333 archive storage without having to unpack anything except the file being
334 requested.
335
336 The test server shows how to use it, basically the platform-specific part of
337 lws prepares a file operations structure that lives in the lws context.
338
339 The user code can get a pointer to the file operations struct
340
341 ```
342         LWS_VISIBLE LWS_EXTERN struct lws_plat_file_ops *
343                 `lws_get_fops`(struct lws_context *context);
344 ```
345
346 and then can use helpers to also leverage these platform-independent
347 file handling apis
348
349 ```
350         static inline lws_filefd_type
351         `lws_plat_file_open`(struct lws *wsi, const char *filename, unsigned long *filelen, int flags)
352
353         static inline int
354         `lws_plat_file_close`(struct lws *wsi, lws_filefd_type fd)
355
356         static inline unsigned long
357         `lws_plat_file_seek_cur`(struct lws *wsi, lws_filefd_type fd, long offset_from_cur_pos)
358
359         static inline int
360         `lws_plat_file_read`(struct lws *wsi, lws_filefd_type fd, unsigned long *amount, unsigned char *buf, unsigned long len)
361
362         static inline int
363         `lws_plat_file_write`(struct lws *wsi, lws_filefd_type fd, unsigned long *amount, unsigned char *buf, unsigned long len)
364 ```
365
366 The user code can also override or subclass the file operations, to either
367 wrap or replace them.  An example is shown in test server.
368
369 @section ecdh ECDH Support
370
371 ECDH Certs are now supported.  Enable the CMake option
372
373         cmake .. -DLWS_SSL_SERVER_WITH_ECDH_CERT=1 
374
375 **and** the info->options flag
376
377         LWS_SERVER_OPTION_SSL_ECDH
378
379 to build in support and select it at runtime.
380
381 @section smp SMP / Multithreaded service
382
383 SMP support is integrated into LWS without any internal threading.  It's
384 very simple to use, libwebsockets-test-server-pthread shows how to do it,
385 use -j <n> argument there to control the number of service threads up to 32.
386
387 Two new members are added to the info struct
388
389         unsigned int count_threads;
390         unsigned int fd_limit_per_thread;
391         
392 leave them at the default 0 to get the normal singlethreaded service loop.
393
394 Set count_threads to n to tell lws you will have n simultaneous service threads
395 operating on the context.
396
397 There is still a single listen socket on one port, no matter how many
398 service threads.
399
400 When a connection is made, it is accepted by the service thread with the least
401 connections active to perform load balancing.
402
403 The user code is responsible for spawning n threads running the service loop
404 associated to a specific tsi (Thread Service Index, 0 .. n - 1).  See
405 the libwebsockets-test-server-pthread for how to do.
406
407 If you leave fd_limit_per_thread at 0, then the process limit of fds is shared
408 between the service threads; if you process was allowed 1024 fds overall then
409 each thread is limited to 1024 / n.
410
411 You can set fd_limit_per_thread to a nonzero number to control this manually, eg
412 the overall supported fd limit is less than the process allowance.
413
414 You can control the context basic data allocation for multithreading from Cmake
415 using -DLWS_MAX_SMP=, if not given it's set to 32.  The serv_buf allocation
416 for the threads (currently 4096) is made at runtime only for active threads.
417
418 Because lws will limit the requested number of actual threads supported
419 according to LWS_MAX_SMP, there is an api lws_get_count_threads(context) to
420 discover how many threads were actually allowed when the context was created.
421
422 It's required to implement locking in the user code in the same way that
423 libwebsockets-test-server-pthread does it, for the FD locking callbacks.
424
425 There is no knowledge or dependency in lws itself about pthreads.  How the
426 locking is implemented is entirely up to the user code.
427
428
429 @section libevuv Libev / Libuv support
430
431 You can select either or both
432
433         -DLWS_WITH_LIBEV=1
434         -DLWS_WITH_LIBUV=1
435
436 at cmake configure-time.  The user application may use one of the
437 context init options flags
438
439         LWS_SERVER_OPTION_LIBEV
440         LWS_SERVER_OPTION_LIBUV
441
442 to indicate it will use either of the event libraries.
443
444
445 @section extopts Extension option control from user code
446
447 User code may set per-connection extension options now, using a new api
448 `lws_set_extension_option()`.
449
450 This should be called from the ESTABLISHED callback like this
451 ```
452          lws_set_extension_option(wsi, "permessage-deflate",
453                                   "rx_buf_size", "12"); /* 1 << 12 */
454 ```
455
456 If the extension is not active (missing or not negotiated for the
457 connection, or extensions are disabled on the library) the call is
458 just returns -1.  Otherwise the connection's extension has its
459 named option changed.
460
461 The extension may decide to alter or disallow the change, in the
462 example above permessage-deflate restricts the size of his rx
463 output buffer also considering the protocol's rx_buf_size member.
464
465
466 @section httpsclient Client connections as HTTP[S] rather than WS[S]
467
468 You may open a generic http client connection using the same
469 struct lws_client_connect_info used to create client ws[s]
470 connections.
471
472 To stay in http[s], set the optional info member "method" to
473 point to the string "GET" instead of the default NULL.
474
475 After the server headers are processed, when payload from the
476 server is available the callback LWS_CALLBACK_RECEIVE_CLIENT_HTTP
477 will be made.
478
479 You can choose whether to process the data immediately, or
480 queue a callback when an outgoing socket is writeable to provide
481 flow control, and process the data in the writable callback.
482
483 Either way you use the api `lws_http_client_read()` to access the
484 data, eg
485
486 ```
487         case LWS_CALLBACK_RECEIVE_CLIENT_HTTP:
488                 {
489                         char buffer[1024 + LWS_PRE];
490                         char *px = buffer + LWS_PRE;
491                         int lenx = sizeof(buffer) - LWS_PRE;
492
493                         lwsl_notice("LWS_CALLBACK_RECEIVE_CLIENT_HTTP\n");
494
495                         /*
496                          * Often you need to flow control this by something
497                          * else being writable.  In that case call the api
498                          * to get a callback when writable here, and do the
499                          * pending client read in the writeable callback of
500                          * the output.
501                          */
502                         if (lws_http_client_read(wsi, &px, &lenx) < 0)
503                                 return -1;
504                         while (lenx--)
505                                 putchar(*px++);
506                 }
507                 break;
508 ```
509
510 Notice that if you will use SSL client connections on a vhost, you must
511 prepare the client SSL context for the vhost after creating the vhost, since
512 this is not normally done if the vhost was set up to listen / serve.  Call
513 the api lws_init_vhost_client_ssl() to also allow client SSL on the vhost.
514
515
516
517 @section vhosts Using lws vhosts
518
519 If you set LWS_SERVER_OPTION_EXPLICIT_VHOSTS options flag when you create
520 your context, it won't create a default vhost using the info struct
521 members for compatibility.  Instead you can call lws_create_vhost()
522 afterwards to attach one or more vhosts manually.
523
524 ```
525         LWS_VISIBLE struct lws_vhost *
526         lws_create_vhost(struct lws_context *context,
527                          struct lws_context_creation_info *info,
528                          struct lws_http_mount *mounts);
529 ```
530
531 lws_create_vhost() uses the same info struct as lws_create_context(),
532 it ignores members related to context and uses the ones meaningful
533 for vhost (marked with VH in libwebsockets.h).
534
535 ```
536         struct lws_context_creation_info {
537                 int port;                                       /* VH */
538                 const char *iface;                              /* VH */
539                 const struct lws_protocols *protocols;          /* VH */
540                 const struct lws_extension *extensions;         /* VH */
541         ...
542 ```
543
544 When you attach the vhost, if the vhost's port already has a listen socket
545 then both vhosts share it and use SNI (is SSL in use) or the Host: header
546 from the client to select the right one.  Or if no other vhost already
547 listening the a new listen socket is created.
548
549 There are some new members but mainly it's stuff you used to set at
550 context creation time.
551
552
553 @section sni How lws matches hostname or SNI to a vhost
554
555 LWS first strips any trailing :port number.
556
557 Then it tries to find an exact name match for a vhost listening on the correct
558 port, ie, if SNI or the Host: header provided abc.com:1234, it will match on a
559 vhost named abc.com that is listening on port 1234.
560
561 If there is no exact match, lws will consider wildcard matches, for example
562 if cats.abc.com:1234 is provided by the client by SNI or Host: header, it will
563 accept a vhost "abc.com" listening on port 1234.  If there was a better, exact,
564 match, it will have been chosen in preference to this.
565
566 Connections with SSL will still have the client go on to check the
567 certificate allows wildcards and error out if not.
568  
569
570
571 @section mounts Using lws mounts on a vhost
572
573 The last argument to lws_create_vhost() lets you associate a linked
574 list of lws_http_mount structures with that vhost's URL 'namespace', in
575 a similar way that unix lets you mount filesystems into areas of your /
576 filesystem how you like and deal with the contents transparently.
577
578 ```
579         struct lws_http_mount {
580                 struct lws_http_mount *mount_next;
581                 const char *mountpoint; /* mountpoint in http pathspace, eg, "/" */
582                 const char *origin; /* path to be mounted, eg, "/var/www/warmcat.com" */
583                 const char *def; /* default target, eg, "index.html" */
584         
585                 struct lws_protocol_vhost_options *cgienv;
586         
587                 int cgi_timeout;
588                 int cache_max_age;
589         
590                 unsigned int cache_reusable:1;
591                 unsigned int cache_revalidate:1;
592                 unsigned int cache_intermediaries:1;
593         
594                 unsigned char origin_protocol;
595                 unsigned char mountpoint_len;
596         };
597 ```
598
599 The last mount structure should have a NULL mount_next, otherwise it should
600 point to the 'next' mount structure in your list.
601
602 Both the mount structures and the strings must persist until the context is
603 destroyed, since they are not copied but used in place.
604
605 `.origin_protocol` should be one of
606
607 ```
608         enum {
609                 LWSMPRO_HTTP,
610                 LWSMPRO_HTTPS,
611                 LWSMPRO_FILE,
612                 LWSMPRO_CGI,
613                 LWSMPRO_REDIR_HTTP,
614                 LWSMPRO_REDIR_HTTPS,
615                 LWSMPRO_CALLBACK,
616         };
617 ```
618
619  - LWSMPRO_FILE is used for mapping url namespace to a filesystem directory and
620 serve it automatically.
621
622  - LWSMPRO_CGI associates the url namespace with the given CGI executable, which
623 runs when the URL is accessed and the output provided to the client.
624
625  - LWSMPRO_REDIR_HTTP and LWSMPRO_REDIR_HTTPS auto-redirect clients to the given
626 origin URL.
627
628  - LWSMPRO_CALLBACK causes the http connection to attach to the callback
629 associated with the named protocol (which may be a plugin).
630
631
632 @section mountcallback Operation of LWSMPRO_CALLBACK mounts
633
634 The feature provided by CALLBACK type mounts is binding a part of the URL
635 namespace to a named protocol callback handler.
636
637 This allows protocol plugins to handle areas of the URL namespace.  For example
638 in test-server-v2.0.c, the URL area "/formtest" is associated with the plugin
639 providing "protocol-post-demo" like this
640
641 ```
642         static const struct lws_http_mount mount_post = {
643                 NULL,           /* linked-list pointer to next*/
644                 "/formtest",            /* mountpoint in URL namespace on this vhost */
645                 "protocol-post-demo",   /* handler */
646                 NULL,   /* default filename if none given */
647                 NULL,
648                 0,
649                 0,
650                 0,
651                 0,
652                 0,
653                 LWSMPRO_CALLBACK,       /* origin points to a callback */
654                 9,                      /* strlen("/formtest"), ie length of the mountpoint */
655         };
656 ```
657
658 Client access to /formtest[anything] will be passed to the callback registered
659 with the named protocol, which in this case is provided by a protocol plugin.
660
661 Access by all methods, eg, GET and POST are handled by the callback.
662
663 protocol-post-demo deals with accepting and responding to the html form that
664 is in the test server HTML.
665
666 When a connection accesses a URL related to a CALLBACK type mount, the
667 connection protocol is changed until the next access on the connection to a
668 URL outside the same CALLBACK mount area.  User space on the connection is
669 arranged to be the size of the new protocol user space allocation as given in
670 the protocol struct.
671
672 This allocation is only deleted / replaced when the connection accesses a
673 URL region with a different protocol (or the default protocols[0] if no
674 CALLBACK area matches it).