2 # (C) Copyright 2000 - 2013
3 # Wolfgang Denk, DENX Software Engineering, wd@denx.de.
5 # SPDX-License-Identifier: GPL-2.0+
11 This directory contains the source code for U-Boot, a boot loader for
12 Embedded boards based on PowerPC, ARM, MIPS and several other
13 processors, which can be installed in a boot ROM and used to
14 initialize and test the hardware or to download and run application
17 The development of U-Boot is closely related to Linux: some parts of
18 the source code originate in the Linux source tree, we have some
19 header files in common, and special provision has been made to
20 support booting of Linux images.
22 Some attention has been paid to make this software easily
23 configurable and extendable. For instance, all monitor commands are
24 implemented with the same call interface, so that it's very easy to
25 add new commands. Also, instead of permanently adding rarely used
26 code (for instance hardware test utilities) to the monitor, you can
27 load and run it dynamically.
33 In general, all boards for which a configuration option exists in the
34 Makefile have been tested to some extent and can be considered
35 "working". In fact, many of them are used in production systems.
37 In case of problems see the CHANGELOG file to find out who contributed
38 the specific port. In addition, there are various MAINTAINERS files
39 scattered throughout the U-Boot source identifying the people or
40 companies responsible for various boards and subsystems.
42 Note: As of August, 2010, there is no longer a CHANGELOG file in the
43 actual U-Boot source tree; however, it can be created dynamically
44 from the Git log using:
52 In case you have questions about, problems with or contributions for
53 U-Boot, you should send a message to the U-Boot mailing list at
54 <u-boot@lists.denx.de>. There is also an archive of previous traffic
55 on the mailing list - please search the archive before asking FAQ's.
56 Please see http://lists.denx.de/pipermail/u-boot and
57 http://dir.gmane.org/gmane.comp.boot-loaders.u-boot
60 Where to get source code:
61 =========================
63 The U-Boot source code is maintained in the Git repository at
64 git://www.denx.de/git/u-boot.git ; you can browse it online at
65 http://www.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary
67 The "snapshot" links on this page allow you to download tarballs of
68 any version you might be interested in. Official releases are also
69 available for FTP download from the ftp://ftp.denx.de/pub/u-boot/
72 Pre-built (and tested) images are available from
73 ftp://ftp.denx.de/pub/u-boot/images/
79 - start from 8xxrom sources
80 - create PPCBoot project (http://sourceforge.net/projects/ppcboot)
82 - make it easier to add custom boards
83 - make it possible to add other [PowerPC] CPUs
84 - extend functions, especially:
85 * Provide extended interface to Linux boot loader
88 * PCMCIA / CompactFlash / ATA disk / SCSI ... boot
89 - create ARMBoot project (http://sourceforge.net/projects/armboot)
90 - add other CPU families (starting with ARM)
91 - create U-Boot project (http://sourceforge.net/projects/u-boot)
92 - current project page: see http://www.denx.de/wiki/U-Boot
98 The "official" name of this project is "Das U-Boot". The spelling
99 "U-Boot" shall be used in all written text (documentation, comments
100 in source files etc.). Example:
102 This is the README file for the U-Boot project.
104 File names etc. shall be based on the string "u-boot". Examples:
106 include/asm-ppc/u-boot.h
108 #include <asm/u-boot.h>
110 Variable names, preprocessor constants etc. shall be either based on
111 the string "u_boot" or on "U_BOOT". Example:
113 U_BOOT_VERSION u_boot_logo
114 IH_OS_U_BOOT u_boot_hush_start
120 Starting with the release in October 2008, the names of the releases
121 were changed from numerical release numbers without deeper meaning
122 into a time stamp based numbering. Regular releases are identified by
123 names consisting of the calendar year and month of the release date.
124 Additional fields (if present) indicate release candidates or bug fix
125 releases in "stable" maintenance trees.
128 U-Boot v2009.11 - Release November 2009
129 U-Boot v2009.11.1 - Release 1 in version November 2009 stable tree
130 U-Boot v2010.09-rc1 - Release candiate 1 for September 2010 release
136 /arch Architecture specific files
137 /arc Files generic to ARC architecture
138 /arm Files generic to ARM architecture
139 /avr32 Files generic to AVR32 architecture
140 /blackfin Files generic to Analog Devices Blackfin architecture
141 /m68k Files generic to m68k architecture
142 /microblaze Files generic to microblaze architecture
143 /mips Files generic to MIPS architecture
144 /nds32 Files generic to NDS32 architecture
145 /nios2 Files generic to Altera NIOS2 architecture
146 /openrisc Files generic to OpenRISC architecture
147 /powerpc Files generic to PowerPC architecture
148 /sandbox Files generic to HW-independent "sandbox"
149 /sh Files generic to SH architecture
150 /sparc Files generic to SPARC architecture
151 /x86 Files generic to x86 architecture
152 /api Machine/arch independent API for external apps
153 /board Board dependent files
154 /cmd U-Boot commands functions
155 /common Misc architecture independent functions
156 /configs Board default configuration files
157 /disk Code for disk drive partition handling
158 /doc Documentation (don't expect too much)
159 /drivers Commonly used device drivers
160 /dts Contains Makefile for building internal U-Boot fdt.
161 /examples Example code for standalone applications, etc.
162 /fs Filesystem code (cramfs, ext2, jffs2, etc.)
163 /include Header Files
164 /lib Library routines generic to all architectures
165 /Licenses Various license files
167 /post Power On Self Test
168 /scripts Various build scripts and Makefiles
169 /test Various unit test files
170 /tools Tools to build S-Record or U-Boot images, etc.
172 Software Configuration:
173 =======================
175 Configuration is usually done using C preprocessor defines; the
176 rationale behind that is to avoid dead code whenever possible.
178 There are two classes of configuration variables:
180 * Configuration _OPTIONS_:
181 These are selectable by the user and have names beginning with
184 * Configuration _SETTINGS_:
185 These depend on the hardware etc. and should not be meddled with if
186 you don't know what you're doing; they have names beginning with
189 Previously, all configuration was done by hand, which involved creating
190 symbolic links and editing configuration files manually. More recently,
191 U-Boot has added the Kbuild infrastructure used by the Linux kernel,
192 allowing you to use the "make menuconfig" command to configure your
196 Selection of Processor Architecture and Board Type:
197 ---------------------------------------------------
199 For all supported boards there are ready-to-use default
200 configurations available; just type "make <board_name>_defconfig".
202 Example: For a TQM823L module type:
205 make TQM823L_defconfig
207 Note: If you're looking for the default configuration file for a board
208 you're sure used to be there but is now missing, check the file
209 doc/README.scrapyard for a list of no longer supported boards.
214 U-Boot can be built natively to run on a Linux host using the 'sandbox'
215 board. This allows feature development which is not board- or architecture-
216 specific to be undertaken on a native platform. The sandbox is also used to
217 run some of U-Boot's tests.
219 See board/sandbox/README.sandbox for more details.
222 Board Initialisation Flow:
223 --------------------------
225 This is the intended start-up flow for boards. This should apply for both
226 SPL and U-Boot proper (i.e. they both follow the same rules).
228 Note: "SPL" stands for "Secondary Program Loader," which is explained in
229 more detail later in this file.
231 At present, SPL mostly uses a separate code path, but the function names
232 and roles of each function are the same. Some boards or architectures
233 may not conform to this. At least most ARM boards which use
234 CONFIG_SPL_FRAMEWORK conform to this.
236 Execution typically starts with an architecture-specific (and possibly
237 CPU-specific) start.S file, such as:
239 - arch/arm/cpu/armv7/start.S
240 - arch/powerpc/cpu/mpc83xx/start.S
241 - arch/mips/cpu/start.S
243 and so on. From there, three functions are called; the purpose and
244 limitations of each of these functions are described below.
247 - purpose: essential init to permit execution to reach board_init_f()
248 - no global_data or BSS
249 - there is no stack (ARMv7 may have one but it will soon be removed)
250 - must not set up SDRAM or use console
251 - must only do the bare minimum to allow execution to continue to
253 - this is almost never needed
254 - return normally from this function
257 - purpose: set up the machine ready for running board_init_r():
258 i.e. SDRAM and serial UART
259 - global_data is available
261 - BSS is not available, so you cannot use global/static variables,
262 only stack variables and global_data
264 Non-SPL-specific notes:
265 - dram_init() is called to set up DRAM. If already done in SPL this
269 - you can override the entire board_init_f() function with your own
271 - preloader_console_init() can be called here in extremis
272 - should set up SDRAM, and anything needed to make the UART work
273 - these is no need to clear BSS, it will be done by crt0.S
274 - must return normally from this function (don't call board_init_r()
277 Here the BSS is cleared. For SPL, if CONFIG_SPL_STACK_R is defined, then at
278 this point the stack and global_data are relocated to below
279 CONFIG_SPL_STACK_R_ADDR. For non-SPL, U-Boot is relocated to run at the top of
283 - purpose: main execution, common code
284 - global_data is available
286 - BSS is available, all static/global variables can be used
287 - execution eventually continues to main_loop()
289 Non-SPL-specific notes:
290 - U-Boot is relocated to the top of memory and is now running from
294 - stack is optionally in SDRAM, if CONFIG_SPL_STACK_R is defined and
295 CONFIG_SPL_STACK_R_ADDR points into SDRAM
296 - preloader_console_init() can be called here - typically this is
297 done by defining CONFIG_SPL_BOARD_INIT and then supplying a
298 spl_board_init() function containing this call
299 - loads U-Boot or (in falcon mode) Linux
303 Configuration Options:
304 ----------------------
306 Configuration depends on the combination of board and CPU type; all
307 such information is kept in a configuration file
308 "include/configs/<board_name>.h".
310 Example: For a TQM823L module, all configuration settings are in
311 "include/configs/TQM823L.h".
314 Many of the options are named exactly as the corresponding Linux
315 kernel configuration options. The intention is to make it easier to
316 build a config tool - later.
319 The following options need to be configured:
321 - CPU Type: Define exactly one, e.g. CONFIG_MPC85XX.
323 - Board Type: Define exactly one, e.g. CONFIG_MPC8540ADS.
325 - CPU Daughterboard Type: (if CONFIG_ATSTK1000 is defined)
326 Define exactly one, e.g. CONFIG_ATSTK1002
328 - Marvell Family Member
329 CONFIG_SYS_MVFS - define it if you want to enable
330 multiple fs option at one time
331 for marvell soc family
333 - 8xx CPU Options: (if using an MPC8xx CPU)
334 CONFIG_8xx_GCLK_FREQ - deprecated: CPU clock if
335 get_gclk_freq() cannot work
336 e.g. if there is no 32KHz
337 reference PIT/RTC clock
338 CONFIG_8xx_OSCLK - PLL input clock (either EXTCLK
341 - 859/866/885 CPU options: (if using a MPC859 or MPC866 or MPC885 CPU):
342 CONFIG_SYS_8xx_CPUCLK_MIN
343 CONFIG_SYS_8xx_CPUCLK_MAX
344 CONFIG_8xx_CPUCLK_DEFAULT
345 See doc/README.MPC866
347 CONFIG_SYS_MEASURE_CPUCLK
349 Define this to measure the actual CPU clock instead
350 of relying on the correctness of the configured
351 values. Mostly useful for board bringup to make sure
352 the PLL is locked at the intended frequency. Note
353 that this requires a (stable) reference clock (32 kHz
354 RTC clock or CONFIG_SYS_8XX_XIN)
356 CONFIG_SYS_DELAYED_ICACHE
358 Define this option if you want to enable the
359 ICache only when Code runs from RAM.
364 Specifies that the core is a 64-bit PowerPC implementation (implements
365 the "64" category of the Power ISA). This is necessary for ePAPR
366 compliance, among other possible reasons.
368 CONFIG_SYS_FSL_TBCLK_DIV
370 Defines the core time base clock divider ratio compared to the
371 system clock. On most PQ3 devices this is 8, on newer QorIQ
372 devices it can be 16 or 32. The ratio varies from SoC to Soc.
374 CONFIG_SYS_FSL_PCIE_COMPAT
376 Defines the string to utilize when trying to match PCIe device
377 tree nodes for the given platform.
379 CONFIG_SYS_PPC_E500_DEBUG_TLB
381 Enables a temporary TLB entry to be used during boot to work
382 around limitations in e500v1 and e500v2 external debugger
383 support. This reduces the portions of the boot code where
384 breakpoints and single stepping do not work. The value of this
385 symbol should be set to the TLB1 entry to be used for this
388 CONFIG_SYS_FSL_ERRATUM_A004510
390 Enables a workaround for erratum A004510. If set,
391 then CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV and
392 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY must be set.
394 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV
395 CONFIG_SYS_FSL_ERRATUM_A004510_SVR_REV2 (optional)
397 Defines one or two SoC revisions (low 8 bits of SVR)
398 for which the A004510 workaround should be applied.
400 The rest of SVR is either not relevant to the decision
401 of whether the erratum is present (e.g. p2040 versus
402 p2041) or is implied by the build target, which controls
403 whether CONFIG_SYS_FSL_ERRATUM_A004510 is set.
405 See Freescale App Note 4493 for more information about
408 CONFIG_A003399_NOR_WORKAROUND
409 Enables a workaround for IFC erratum A003399. It is only
410 required during NOR boot.
412 CONFIG_A008044_WORKAROUND
413 Enables a workaround for T1040/T1042 erratum A008044. It is only
414 required during NAND boot and valid for Rev 1.0 SoC revision
416 CONFIG_SYS_FSL_CORENET_SNOOPVEC_COREONLY
418 This is the value to write into CCSR offset 0x18600
419 according to the A004510 workaround.
421 CONFIG_SYS_FSL_DSP_DDR_ADDR
422 This value denotes start offset of DDR memory which is
423 connected exclusively to the DSP cores.
425 CONFIG_SYS_FSL_DSP_M2_RAM_ADDR
426 This value denotes start offset of M2 memory
427 which is directly connected to the DSP core.
429 CONFIG_SYS_FSL_DSP_M3_RAM_ADDR
430 This value denotes start offset of M3 memory which is directly
431 connected to the DSP core.
433 CONFIG_SYS_FSL_DSP_CCSRBAR_DEFAULT
434 This value denotes start offset of DSP CCSR space.
436 CONFIG_SYS_FSL_SINGLE_SOURCE_CLK
437 Single Source Clock is clocking mode present in some of FSL SoC's.
438 In this mode, a single differential clock is used to supply
439 clocks to the sysclock, ddrclock and usbclock.
441 CONFIG_SYS_CPC_REINIT_F
442 This CONFIG is defined when the CPC is configured as SRAM at the
443 time of U-Boot entry and is required to be re-initialized.
446 Indicates this SoC supports deep sleep feature. If deep sleep is
447 supported, core will start to execute uboot when wakes up.
449 - Generic CPU options:
450 CONFIG_SYS_GENERIC_GLOBAL_DATA
451 Defines global data is initialized in generic board board_init_f().
452 If this macro is defined, global data is created and cleared in
453 generic board board_init_f(). Without this macro, architecture/board
454 should initialize global data before calling board_init_f().
456 CONFIG_SYS_BIG_ENDIAN, CONFIG_SYS_LITTLE_ENDIAN
458 Defines the endianess of the CPU. Implementation of those
459 values is arch specific.
462 Freescale DDR driver in use. This type of DDR controller is
463 found in mpc83xx, mpc85xx, mpc86xx as well as some ARM core
466 CONFIG_SYS_FSL_DDR_ADDR
467 Freescale DDR memory-mapped register base.
469 CONFIG_SYS_FSL_DDR_EMU
470 Specify emulator support for DDR. Some DDR features such as
471 deskew training are not available.
473 CONFIG_SYS_FSL_DDRC_GEN1
474 Freescale DDR1 controller.
476 CONFIG_SYS_FSL_DDRC_GEN2
477 Freescale DDR2 controller.
479 CONFIG_SYS_FSL_DDRC_GEN3
480 Freescale DDR3 controller.
482 CONFIG_SYS_FSL_DDRC_GEN4
483 Freescale DDR4 controller.
485 CONFIG_SYS_FSL_DDRC_ARM_GEN3
486 Freescale DDR3 controller for ARM-based SoCs.
489 Board config to use DDR1. It can be enabled for SoCs with
490 Freescale DDR1 or DDR2 controllers, depending on the board
494 Board config to use DDR2. It can be enabled for SoCs with
495 Freescale DDR2 or DDR3 controllers, depending on the board
499 Board config to use DDR3. It can be enabled for SoCs with
500 Freescale DDR3 or DDR3L controllers.
503 Board config to use DDR3L. It can be enabled for SoCs with
507 Board config to use DDR4. It can be enabled for SoCs with
510 CONFIG_SYS_FSL_IFC_BE
511 Defines the IFC controller register space as Big Endian
513 CONFIG_SYS_FSL_IFC_LE
514 Defines the IFC controller register space as Little Endian
516 CONFIG_SYS_FSL_PBL_PBI
517 It enables addition of RCW (Power on reset configuration) in built image.
518 Please refer doc/README.pblimage for more details
520 CONFIG_SYS_FSL_PBL_RCW
521 It adds PBI(pre-boot instructions) commands in u-boot build image.
522 PBI commands can be used to configure SoC before it starts the execution.
523 Please refer doc/README.pblimage for more details
526 It adds a target to create boot binary having SPL binary in PBI format
527 concatenated with u-boot binary.
529 CONFIG_SYS_FSL_DDR_BE
530 Defines the DDR controller register space as Big Endian
532 CONFIG_SYS_FSL_DDR_LE
533 Defines the DDR controller register space as Little Endian
535 CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
536 Physical address from the view of DDR controllers. It is the
537 same as CONFIG_SYS_DDR_SDRAM_BASE for all Power SoCs. But
538 it could be different for ARM SoCs.
540 CONFIG_SYS_FSL_DDR_INTLV_256B
541 DDR controller interleaving on 256-byte. This is a special
542 interleaving mode, handled by Dickens for Freescale layerscape
545 CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS
546 Number of controllers used as main memory.
548 CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
549 Number of controllers used for other than main memory.
551 CONFIG_SYS_FSL_HAS_DP_DDR
552 Defines the SoC has DP-DDR used for DPAA.
554 CONFIG_SYS_FSL_SEC_BE
555 Defines the SEC controller register space as Big Endian
557 CONFIG_SYS_FSL_SEC_LE
558 Defines the SEC controller register space as Little Endian
561 CONFIG_SYS_INIT_SP_OFFSET
563 Offset relative to CONFIG_SYS_SDRAM_BASE for initial stack
564 pointer. This is needed for the temporary stack before
567 CONFIG_SYS_MIPS_CACHE_MODE
569 Cache operation mode for the MIPS CPU.
570 See also arch/mips/include/asm/mipsregs.h.
572 CONF_CM_CACHABLE_NO_WA
575 CONF_CM_CACHABLE_NONCOHERENT
579 CONF_CM_CACHABLE_ACCELERATED
581 CONFIG_SYS_XWAY_EBU_BOOTCFG
583 Special option for Lantiq XWAY SoCs for booting from NOR flash.
584 See also arch/mips/cpu/mips32/start.S.
586 CONFIG_XWAY_SWAP_BYTES
588 Enable compilation of tools/xway-swap-bytes needed for Lantiq
589 XWAY SoCs for booting from NOR flash. The U-Boot image needs to
590 be swapped if a flash programmer is used.
593 CONFIG_SYS_EXCEPTION_VECTORS_HIGH
595 Select high exception vectors of the ARM core, e.g., do not
596 clear the V bit of the c1 register of CP15.
598 CONFIG_SYS_THUMB_BUILD
600 Use this flag to build U-Boot using the Thumb instruction
601 set for ARM architectures. Thumb instruction set provides
602 better code density. For ARM architectures that support
603 Thumb2 this flag will result in Thumb2 code generated by
606 CONFIG_ARM_ERRATA_716044
607 CONFIG_ARM_ERRATA_742230
608 CONFIG_ARM_ERRATA_743622
609 CONFIG_ARM_ERRATA_751472
610 CONFIG_ARM_ERRATA_761320
611 CONFIG_ARM_ERRATA_773022
612 CONFIG_ARM_ERRATA_774769
613 CONFIG_ARM_ERRATA_794072
615 If set, the workarounds for these ARM errata are applied early
616 during U-Boot startup. Note that these options force the
617 workarounds to be applied; no CPU-type/version detection
618 exists, unlike the similar options in the Linux kernel. Do not
619 set these options unless they apply!
622 Generic timer clock source frequency.
624 COUNTER_FREQUENCY_REAL
625 Generic timer clock source frequency if the real clock is
626 different from COUNTER_FREQUENCY, and can only be determined
629 NOTE: The following can be machine specific errata. These
630 do have ability to provide rudimentary version and machine
631 specific checks, but expect no product checks.
632 CONFIG_ARM_ERRATA_430973
633 CONFIG_ARM_ERRATA_454179
634 CONFIG_ARM_ERRATA_621766
635 CONFIG_ARM_ERRATA_798870
636 CONFIG_ARM_ERRATA_801819
639 CONFIG_TEGRA_SUPPORT_NON_SECURE
641 Support executing U-Boot in non-secure (NS) mode. Certain
642 impossible actions will be skipped if the CPU is in NS mode,
643 such as ARM architectural timer initialization.
645 - Linux Kernel Interface:
648 U-Boot stores all clock information in Hz
649 internally. For binary compatibility with older Linux
650 kernels (which expect the clocks passed in the
651 bd_info data to be in MHz) the environment variable
652 "clocks_in_mhz" can be defined so that U-Boot
653 converts clock data to MHZ before passing it to the
655 When CONFIG_CLOCKS_IN_MHZ is defined, a definition of
656 "clocks_in_mhz=1" is automatically included in the
659 CONFIG_MEMSIZE_IN_BYTES [relevant for MIPS only]
661 When transferring memsize parameter to Linux, some versions
662 expect it to be in bytes, others in MB.
663 Define CONFIG_MEMSIZE_IN_BYTES to make it in bytes.
667 New kernel versions are expecting firmware settings to be
668 passed using flattened device trees (based on open firmware
672 * New libfdt-based support
673 * Adds the "fdt" command
674 * The bootm command automatically updates the fdt
676 OF_CPU - The proper name of the cpus node (only required for
677 MPC512X and MPC5xxx based boards).
678 OF_SOC - The proper name of the soc node (only required for
679 MPC512X and MPC5xxx based boards).
680 OF_TBCLK - The timebase frequency.
681 OF_STDOUT_PATH - The path to the console device
683 boards with QUICC Engines require OF_QE to set UCC MAC
686 CONFIG_OF_BOARD_SETUP
688 Board code has addition modification that it wants to make
689 to the flat device tree before handing it off to the kernel
691 CONFIG_OF_SYSTEM_SETUP
693 Other code has addition modification that it wants to make
694 to the flat device tree before handing it off to the kernel.
695 This causes ft_system_setup() to be called before booting
700 U-Boot can detect if an IDE device is present or not.
701 If not, and this new config option is activated, U-Boot
702 removes the ATA node from the DTS before booting Linux,
703 so the Linux IDE driver does not probe the device and
704 crash. This is needed for buggy hardware (uc101) where
705 no pull down resistor is connected to the signal IDE5V_DD7.
707 CONFIG_MACH_TYPE [relevant for ARM only][mandatory]
709 This setting is mandatory for all boards that have only one
710 machine type and must be used to specify the machine type
711 number as it appears in the ARM machine registry
712 (see http://www.arm.linux.org.uk/developer/machines/).
713 Only boards that have multiple machine types supported
714 in a single configuration file and the machine type is
715 runtime discoverable, do not have to use this setting.
717 - vxWorks boot parameters:
719 bootvx constructs a valid bootline using the following
720 environments variables: bootdev, bootfile, ipaddr, netmask,
721 serverip, gatewayip, hostname, othbootargs.
722 It loads the vxWorks image pointed bootfile.
724 Note: If a "bootargs" environment is defined, it will overwride
725 the defaults discussed just above.
727 - Cache Configuration:
728 CONFIG_SYS_ICACHE_OFF - Do not enable instruction cache in U-Boot
729 CONFIG_SYS_DCACHE_OFF - Do not enable data cache in U-Boot
730 CONFIG_SYS_L2CACHE_OFF- Do not enable L2 cache in U-Boot
732 - Cache Configuration for ARM:
733 CONFIG_SYS_L2_PL310 - Enable support for ARM PL310 L2 cache
735 CONFIG_SYS_PL310_BASE - Physical base address of PL310
736 controller register space
741 Define this if you want support for Amba PrimeCell PL010 UARTs.
745 Define this if you want support for Amba PrimeCell PL011 UARTs.
749 If you have Amba PrimeCell PL011 UARTs, set this variable to
750 the clock speed of the UARTs.
754 If you have Amba PrimeCell PL010 or PL011 UARTs on your board,
755 define this to a list of base addresses for each (supported)
756 port. See e.g. include/configs/versatile.h
758 CONFIG_SERIAL_HW_FLOW_CONTROL
760 Define this variable to enable hw flow control in serial driver.
761 Current user of this option is drivers/serial/nsl16550.c driver
764 Depending on board, define exactly one serial port
765 (like CONFIG_8xx_CONS_SMC1, CONFIG_8xx_CONS_SMC2,
766 CONFIG_8xx_CONS_SCC1, ...), or switch off the serial
767 console by defining CONFIG_8xx_CONS_NONE
769 Note: if CONFIG_8xx_CONS_NONE is defined, the serial
770 port routines must be defined elsewhere
771 (i.e. serial_init(), serial_getc(), ...)
774 Enables console device for a color framebuffer. Needs following
775 defines (cf. smiLynxEM, i8042)
776 VIDEO_FB_LITTLE_ENDIAN graphic memory organisation
778 VIDEO_HW_RECTFILL graphic chip supports
781 VIDEO_HW_BITBLT graphic chip supports
782 bit-blit (cf. smiLynxEM)
783 VIDEO_VISIBLE_COLS visible pixel columns
785 VIDEO_VISIBLE_ROWS visible pixel rows
786 VIDEO_PIXEL_SIZE bytes per pixel
787 VIDEO_DATA_FORMAT graphic data format
788 (0-5, cf. cfb_console.c)
789 VIDEO_FB_ADRS framebuffer address
790 VIDEO_KBD_INIT_FCT keyboard int fct
791 (i.e. rx51_kp_init())
792 VIDEO_TSTC_FCT test char fct
794 VIDEO_GETC_FCT get char fct
796 CONFIG_VIDEO_LOGO display Linux logo in
798 CONFIG_VIDEO_BMP_LOGO use bmp_logo.h instead of
799 linux_logo.h for logo.
800 Requires CONFIG_VIDEO_LOGO
801 CONFIG_CONSOLE_EXTRA_INFO
802 additional board info beside
804 CONFIG_HIDE_LOGO_VERSION
805 do not display bootloader
808 When CONFIG_CFB_CONSOLE_ANSI is defined, console will support
809 a limited number of ANSI escape sequences (cursor control,
810 erase functions and limited graphics rendition control).
812 When CONFIG_CFB_CONSOLE is defined, video console is
813 default i/o. Serial console can be forced with
814 environment 'console=serial'.
816 When CONFIG_SILENT_CONSOLE is defined, all console
817 messages (by U-Boot and Linux!) can be silenced with
818 the "silent" environment variable. See
819 doc/README.silent for more information.
821 CONFIG_SYS_CONSOLE_BG_COL: define the backgroundcolor, default
823 CONFIG_SYS_CONSOLE_FG_COL: define the foregroundcolor, default
827 CONFIG_BAUDRATE - in bps
828 Select one of the baudrates listed in
829 CONFIG_SYS_BAUDRATE_TABLE, see below.
830 CONFIG_SYS_BRGCLK_PRESCALE, baudrate prescale
832 - Console Rx buffer length
833 With CONFIG_SYS_SMC_RXBUFLEN it is possible to define
834 the maximum receive buffer length for the SMC.
835 This option is actual only for 82xx and 8xx possible.
836 If using CONFIG_SYS_SMC_RXBUFLEN also CONFIG_SYS_MAXIDLE
837 must be defined, to setup the maximum idle timeout for
840 - Pre-Console Buffer:
841 Prior to the console being initialised (i.e. serial UART
842 initialised etc) all console output is silently discarded.
843 Defining CONFIG_PRE_CONSOLE_BUFFER will cause U-Boot to
844 buffer any console messages prior to the console being
845 initialised to a buffer of size CONFIG_PRE_CON_BUF_SZ
846 bytes located at CONFIG_PRE_CON_BUF_ADDR. The buffer is
847 a circular buffer, so if more than CONFIG_PRE_CON_BUF_SZ
848 bytes are output before the console is initialised, the
849 earlier bytes are discarded.
851 Note that when printing the buffer a copy is made on the
852 stack so CONFIG_PRE_CON_BUF_SZ must fit on the stack.
854 'Sane' compilers will generate smaller code if
855 CONFIG_PRE_CON_BUF_SZ is a power of 2
859 Only needed when CONFIG_BOOTDELAY is enabled;
860 define a command string that is automatically executed
861 when no character is read on the console interface
862 within "Boot Delay" after reset.
865 This can be used to pass arguments to the bootm
866 command. The value of CONFIG_BOOTARGS goes into the
867 environment value "bootargs".
869 CONFIG_RAMBOOT and CONFIG_NFSBOOT
870 The value of these goes into the environment as
871 "ramboot" and "nfsboot" respectively, and can be used
872 as a convenience, when switching between booting from
876 CONFIG_BOOTCOUNT_LIMIT
877 Implements a mechanism for detecting a repeating reboot
879 http://www.denx.de/wiki/view/DULG/UBootBootCountLimit
882 If no softreset save registers are found on the hardware
883 "bootcount" is stored in the environment. To prevent a
884 saveenv on all reboots, the environment variable
885 "upgrade_available" is used. If "upgrade_available" is
886 0, "bootcount" is always 0, if "upgrade_available" is
887 1 "bootcount" is incremented in the environment.
888 So the Userspace Applikation must set the "upgrade_available"
889 and "bootcount" variable to 0, if a boot was successfully.
894 When this option is #defined, the existence of the
895 environment variable "preboot" will be checked
896 immediately before starting the CONFIG_BOOTDELAY
897 countdown and/or running the auto-boot command resp.
898 entering interactive mode.
900 This feature is especially useful when "preboot" is
901 automatically generated or modified. For an example
902 see the LWMON board specific code: here "preboot" is
903 modified when the user holds down a certain
904 combination of keys on the (special) keyboard when
907 - Serial Download Echo Mode:
909 If defined to 1, all characters received during a
910 serial download (using the "loads" command) are
911 echoed back. This might be needed by some terminal
912 emulations (like "cu"), but may as well just take
913 time on others. This setting #define's the initial
914 value of the "loads_echo" environment variable.
916 - Kgdb Serial Baudrate: (if CONFIG_CMD_KGDB is defined)
918 Select one of the baudrates listed in
919 CONFIG_SYS_BAUDRATE_TABLE, see below.
922 Monitor commands can be included or excluded
923 from the build by using the #include files
924 <config_cmd_all.h> and #undef'ing unwanted
925 commands, or adding #define's for wanted commands.
927 The default command configuration includes all commands
928 except those marked below with a "*".
930 CONFIG_CMD_AES AES 128 CBC encrypt/decrypt
931 CONFIG_CMD_ASKENV * ask for env variable
932 CONFIG_CMD_BDI bdinfo
933 CONFIG_CMD_BEDBUG * Include BedBug Debugger
934 CONFIG_CMD_BMP * BMP support
935 CONFIG_CMD_BSP * Board specific commands
936 CONFIG_CMD_BOOTD bootd
937 CONFIG_CMD_BOOTI * ARM64 Linux kernel Image support
938 CONFIG_CMD_CACHE * icache, dcache
939 CONFIG_CMD_CLK * clock command support
940 CONFIG_CMD_CONSOLE coninfo
941 CONFIG_CMD_CRC32 * crc32
942 CONFIG_CMD_DATE * support for RTC, date/time...
943 CONFIG_CMD_DHCP * DHCP support
944 CONFIG_CMD_DIAG * Diagnostics
945 CONFIG_CMD_DS4510 * ds4510 I2C gpio commands
946 CONFIG_CMD_DS4510_INFO * ds4510 I2C info command
947 CONFIG_CMD_DS4510_MEM * ds4510 I2C eeprom/sram commansd
948 CONFIG_CMD_DS4510_RST * ds4510 I2C rst command
949 CONFIG_CMD_DTT * Digital Therm and Thermostat
950 CONFIG_CMD_ECHO echo arguments
951 CONFIG_CMD_EDITENV edit env variable
952 CONFIG_CMD_EEPROM * EEPROM read/write support
953 CONFIG_CMD_EEPROM_LAYOUT* EEPROM layout aware commands
954 CONFIG_CMD_ELF * bootelf, bootvx
955 CONFIG_CMD_ENV_CALLBACK * display details about env callbacks
956 CONFIG_CMD_ENV_FLAGS * display details about env flags
957 CONFIG_CMD_ENV_EXISTS * check existence of env variable
958 CONFIG_CMD_EXPORTENV * export the environment
959 CONFIG_CMD_EXT2 * ext2 command support
960 CONFIG_CMD_EXT4 * ext4 command support
961 CONFIG_CMD_FS_GENERIC * filesystem commands (e.g. load, ls)
962 that work for multiple fs types
963 CONFIG_CMD_FS_UUID * Look up a filesystem UUID
964 CONFIG_CMD_SAVEENV saveenv
965 CONFIG_CMD_FDC * Floppy Disk Support
966 CONFIG_CMD_FAT * FAT command support
967 CONFIG_CMD_FLASH flinfo, erase, protect
968 CONFIG_CMD_FPGA FPGA device initialization support
969 CONFIG_CMD_FUSE * Device fuse support
970 CONFIG_CMD_GETTIME * Get time since boot
971 CONFIG_CMD_GO * the 'go' command (exec code)
972 CONFIG_CMD_GREPENV * search environment
973 CONFIG_CMD_HASH * calculate hash / digest
974 CONFIG_CMD_I2C * I2C serial bus support
975 CONFIG_CMD_IDE * IDE harddisk support
976 CONFIG_CMD_IMI iminfo
977 CONFIG_CMD_IMLS List all images found in NOR flash
978 CONFIG_CMD_IMLS_NAND * List all images found in NAND flash
979 CONFIG_CMD_IMMAP * IMMR dump support
980 CONFIG_CMD_IOTRACE * I/O tracing for debugging
981 CONFIG_CMD_IMPORTENV * import an environment
982 CONFIG_CMD_INI * import data from an ini file into the env
983 CONFIG_CMD_IRQ * irqinfo
984 CONFIG_CMD_ITEST Integer/string test of 2 values
985 CONFIG_CMD_JFFS2 * JFFS2 Support
986 CONFIG_CMD_KGDB * kgdb
987 CONFIG_CMD_LDRINFO * ldrinfo (display Blackfin loader)
988 CONFIG_CMD_LINK_LOCAL * link-local IP address auto-configuration
990 CONFIG_CMD_LOADB loadb
991 CONFIG_CMD_LOADS loads
992 CONFIG_CMD_MD5SUM * print md5 message digest
993 (requires CONFIG_CMD_MEMORY and CONFIG_MD5)
994 CONFIG_CMD_MEMINFO * Display detailed memory information
995 CONFIG_CMD_MEMORY md, mm, nm, mw, cp, cmp, crc, base,
997 CONFIG_CMD_MEMTEST * mtest
998 CONFIG_CMD_MISC Misc functions like sleep etc
999 CONFIG_CMD_MMC * MMC memory mapped support
1000 CONFIG_CMD_MII * MII utility commands
1001 CONFIG_CMD_MTDPARTS * MTD partition support
1002 CONFIG_CMD_NAND * NAND support
1003 CONFIG_CMD_NET bootp, tftpboot, rarpboot
1004 CONFIG_CMD_NFS NFS support
1005 CONFIG_CMD_PCA953X * PCA953x I2C gpio commands
1006 CONFIG_CMD_PCA953X_INFO * PCA953x I2C gpio info command
1007 CONFIG_CMD_PCI * pciinfo
1008 CONFIG_CMD_PCMCIA * PCMCIA support
1009 CONFIG_CMD_PING * send ICMP ECHO_REQUEST to network
1011 CONFIG_CMD_PORTIO * Port I/O
1012 CONFIG_CMD_READ * Read raw data from partition
1013 CONFIG_CMD_REGINFO * Register dump
1014 CONFIG_CMD_RUN run command in env variable
1015 CONFIG_CMD_SANDBOX * sb command to access sandbox features
1016 CONFIG_CMD_SAVES * save S record dump
1017 CONFIG_SCSI * SCSI Support
1018 CONFIG_CMD_SDRAM * print SDRAM configuration information
1019 (requires CONFIG_CMD_I2C)
1020 CONFIG_CMD_SETGETDCR Support for DCR Register access
1022 CONFIG_CMD_SF * Read/write/erase SPI NOR flash
1023 CONFIG_CMD_SHA1SUM * print sha1 memory digest
1024 (requires CONFIG_CMD_MEMORY)
1025 CONFIG_CMD_SOFTSWITCH * Soft switch setting command for BF60x
1026 CONFIG_CMD_SOURCE "source" command Support
1027 CONFIG_CMD_SPI * SPI serial bus support
1028 CONFIG_CMD_TFTPSRV * TFTP transfer in server mode
1029 CONFIG_CMD_TFTPPUT * TFTP put command (upload)
1030 CONFIG_CMD_TIME * run command and report execution time (ARM specific)
1031 CONFIG_CMD_TIMER * access to the system tick timer
1032 CONFIG_CMD_USB * USB support
1033 CONFIG_CMD_CDP * Cisco Discover Protocol support
1034 CONFIG_CMD_MFSL * Microblaze FSL support
1035 CONFIG_CMD_XIMG Load part of Multi Image
1036 CONFIG_CMD_UUID * Generate random UUID or GUID string
1038 EXAMPLE: If you want all functions except of network
1039 support you can write:
1041 #include "config_cmd_all.h"
1042 #undef CONFIG_CMD_NET
1045 fdt (flattened device tree) command: CONFIG_OF_LIBFDT
1047 Note: Don't enable the "icache" and "dcache" commands
1048 (configuration option CONFIG_CMD_CACHE) unless you know
1049 what you (and your U-Boot users) are doing. Data
1050 cache cannot be enabled on systems like the 8xx or
1051 8260 (where accesses to the IMMR region must be
1052 uncached), and it cannot be disabled on all other
1053 systems where we (mis-) use the data cache to hold an
1054 initial stack and some data.
1057 XXX - this list needs to get updated!
1059 - Removal of commands
1060 If no commands are needed to boot, you can disable
1061 CONFIG_CMDLINE to remove them. In this case, the command line
1062 will not be available, and when U-Boot wants to execute the
1063 boot command (on start-up) it will call board_run_command()
1064 instead. This can reduce image size significantly for very
1065 simple boot procedures.
1067 - Regular expression support:
1069 If this variable is defined, U-Boot is linked against
1070 the SLRE (Super Light Regular Expression) library,
1071 which adds regex support to some commands, as for
1072 example "env grep" and "setexpr".
1076 If this variable is defined, U-Boot will use a device tree
1077 to configure its devices, instead of relying on statically
1078 compiled #defines in the board file. This option is
1079 experimental and only available on a few boards. The device
1080 tree is available in the global data as gd->fdt_blob.
1082 U-Boot needs to get its device tree from somewhere. This can
1083 be done using one of the two options below:
1086 If this variable is defined, U-Boot will embed a device tree
1087 binary in its image. This device tree file should be in the
1088 board directory and called <soc>-<board>.dts. The binary file
1089 is then picked up in board_init_f() and made available through
1090 the global data structure as gd->blob.
1093 If this variable is defined, U-Boot will build a device tree
1094 binary. It will be called u-boot.dtb. Architecture-specific
1095 code will locate it at run-time. Generally this works by:
1097 cat u-boot.bin u-boot.dtb >image.bin
1099 and in fact, U-Boot does this for you, creating a file called
1100 u-boot-dtb.bin which is useful in the common case. You can
1101 still use the individual files if you need something more
1106 If this variable is defined, it enables watchdog
1107 support for the SoC. There must be support in the SoC
1108 specific code for a watchdog. For the 8xx and 8260
1109 CPUs, the SIU Watchdog feature is enabled in the SYPCR
1110 register. When supported for a specific SoC is
1111 available, then no further board specific code should
1112 be needed to use it.
1115 When using a watchdog circuitry external to the used
1116 SoC, then define this variable and provide board
1117 specific code for the "hw_watchdog_reset" function.
1119 CONFIG_AT91_HW_WDT_TIMEOUT
1120 specify the timeout in seconds. default 2 seconds.
1123 CONFIG_VERSION_VARIABLE
1124 If this variable is defined, an environment variable
1125 named "ver" is created by U-Boot showing the U-Boot
1126 version as printed by the "version" command.
1127 Any change to this variable will be reverted at the
1132 When CONFIG_CMD_DATE is selected, the type of the RTC
1133 has to be selected, too. Define exactly one of the
1136 CONFIG_RTC_MPC8xx - use internal RTC of MPC8xx
1137 CONFIG_RTC_PCF8563 - use Philips PCF8563 RTC
1138 CONFIG_RTC_MC13XXX - use MC13783 or MC13892 RTC
1139 CONFIG_RTC_MC146818 - use MC146818 RTC
1140 CONFIG_RTC_DS1307 - use Maxim, Inc. DS1307 RTC
1141 CONFIG_RTC_DS1337 - use Maxim, Inc. DS1337 RTC
1142 CONFIG_RTC_DS1338 - use Maxim, Inc. DS1338 RTC
1143 CONFIG_RTC_DS1339 - use Maxim, Inc. DS1339 RTC
1144 CONFIG_RTC_DS164x - use Dallas DS164x RTC
1145 CONFIG_RTC_ISL1208 - use Intersil ISL1208 RTC
1146 CONFIG_RTC_MAX6900 - use Maxim, Inc. MAX6900 RTC
1147 CONFIG_SYS_RTC_DS1337_NOOSC - Turn off the OSC output for DS1337
1148 CONFIG_SYS_RV3029_TCR - enable trickle charger on
1151 Note that if the RTC uses I2C, then the I2C interface
1152 must also be configured. See I2C Support, below.
1155 CONFIG_PCA953X - use NXP's PCA953X series I2C GPIO
1157 The CONFIG_SYS_I2C_PCA953X_WIDTH option specifies a list of
1158 chip-ngpio pairs that tell the PCA953X driver the number of
1159 pins supported by a particular chip.
1161 Note that if the GPIO device uses I2C, then the I2C interface
1162 must also be configured. See I2C Support, below.
1165 When CONFIG_IO_TRACE is selected, U-Boot intercepts all I/O
1166 accesses and can checksum them or write a list of them out
1167 to memory. See the 'iotrace' command for details. This is
1168 useful for testing device drivers since it can confirm that
1169 the driver behaves the same way before and after a code
1170 change. Currently this is supported on sandbox and arm. To
1171 add support for your architecture, add '#include <iotrace.h>'
1172 to the bottom of arch/<arch>/include/asm/io.h and test.
1174 Example output from the 'iotrace stats' command is below.
1175 Note that if the trace buffer is exhausted, the checksum will
1176 still continue to operate.
1179 Start: 10000000 (buffer start address)
1180 Size: 00010000 (buffer size)
1181 Offset: 00000120 (current buffer offset)
1182 Output: 10000120 (start + offset)
1183 Count: 00000018 (number of trace records)
1184 CRC32: 9526fb66 (CRC32 of all trace records)
1186 - Timestamp Support:
1188 When CONFIG_TIMESTAMP is selected, the timestamp
1189 (date and time) of an image is printed by image
1190 commands like bootm or iminfo. This option is
1191 automatically enabled when you select CONFIG_CMD_DATE .
1193 - Partition Labels (disklabels) Supported:
1194 Zero or more of the following:
1195 CONFIG_MAC_PARTITION Apple's MacOS partition table.
1196 CONFIG_DOS_PARTITION MS Dos partition table, traditional on the
1197 Intel architecture, USB sticks, etc.
1198 CONFIG_ISO_PARTITION ISO partition table, used on CDROM etc.
1199 CONFIG_EFI_PARTITION GPT partition table, common when EFI is the
1200 bootloader. Note 2TB partition limit; see
1202 CONFIG_MTD_PARTITIONS Memory Technology Device partition table.
1204 If IDE or SCSI support is enabled (CONFIG_CMD_IDE or
1205 CONFIG_SCSI) you must configure support for at
1206 least one non-MTD partition type as well.
1209 CONFIG_IDE_RESET_ROUTINE - this is defined in several
1210 board configurations files but used nowhere!
1212 CONFIG_IDE_RESET - is this is defined, IDE Reset will
1213 be performed by calling the function
1214 ide_set_reset(int reset)
1215 which has to be defined in a board specific file
1220 Set this to enable ATAPI support.
1225 Set this to enable support for disks larger than 137GB
1226 Also look at CONFIG_SYS_64BIT_LBA.
1227 Whithout these , LBA48 support uses 32bit variables and will 'only'
1228 support disks up to 2.1TB.
1230 CONFIG_SYS_64BIT_LBA:
1231 When enabled, makes the IDE subsystem use 64bit sector addresses.
1235 At the moment only there is only support for the
1236 SYM53C8XX SCSI controller; define
1237 CONFIG_SCSI_SYM53C8XX to enable it.
1239 CONFIG_SYS_SCSI_MAX_LUN [8], CONFIG_SYS_SCSI_MAX_SCSI_ID [7] and
1240 CONFIG_SYS_SCSI_MAX_DEVICE [CONFIG_SYS_SCSI_MAX_SCSI_ID *
1241 CONFIG_SYS_SCSI_MAX_LUN] can be adjusted to define the
1242 maximum numbers of LUNs, SCSI ID's and target
1244 CONFIG_SYS_SCSI_SYM53C8XX_CCF to fix clock timing (80Mhz)
1246 The environment variable 'scsidevs' is set to the number of
1247 SCSI devices found during the last scan.
1249 - NETWORK Support (PCI):
1251 Support for Intel 8254x/8257x gigabit chips.
1254 Utility code for direct access to the SPI bus on Intel 8257x.
1255 This does not do anything useful unless you set at least one
1256 of CONFIG_CMD_E1000 or CONFIG_E1000_SPI_GENERIC.
1258 CONFIG_E1000_SPI_GENERIC
1259 Allow generic access to the SPI bus on the Intel 8257x, for
1260 example with the "sspi" command.
1263 Management command for E1000 devices. When used on devices
1264 with SPI support you can reprogram the EEPROM from U-Boot.
1267 Support for Intel 82557/82559/82559ER chips.
1268 Optional CONFIG_EEPRO100_SROM_WRITE enables EEPROM
1269 write routine for first time initialisation.
1272 Support for Digital 2114x chips.
1273 Optional CONFIG_TULIP_SELECT_MEDIA for board specific
1274 modem chip initialisation (KS8761/QS6611).
1277 Support for National dp83815 chips.
1280 Support for National dp8382[01] gigabit chips.
1282 - NETWORK Support (other):
1284 CONFIG_DRIVER_AT91EMAC
1285 Support for AT91RM9200 EMAC.
1288 Define this to use reduced MII inteface
1290 CONFIG_DRIVER_AT91EMAC_QUIET
1291 If this defined, the driver is quiet.
1292 The driver doen't show link status messages.
1294 CONFIG_CALXEDA_XGMAC
1295 Support for the Calxeda XGMAC device
1298 Support for SMSC's LAN91C96 chips.
1300 CONFIG_LAN91C96_USE_32_BIT
1301 Define this to enable 32 bit addressing
1304 Support for SMSC's LAN91C111 chip
1306 CONFIG_SMC91111_BASE
1307 Define this to hold the physical address
1308 of the device (I/O space)
1310 CONFIG_SMC_USE_32_BIT
1311 Define this if data bus is 32 bits
1313 CONFIG_SMC_USE_IOFUNCS
1314 Define this to use i/o functions instead of macros
1315 (some hardware wont work with macros)
1317 CONFIG_DRIVER_TI_EMAC
1318 Support for davinci emac
1320 CONFIG_SYS_DAVINCI_EMAC_PHY_COUNT
1321 Define this if you have more then 3 PHYs.
1324 Support for Faraday's FTGMAC100 Gigabit SoC Ethernet
1326 CONFIG_FTGMAC100_EGIGA
1327 Define this to use GE link update with gigabit PHY.
1328 Define this if FTGMAC100 is connected to gigabit PHY.
1329 If your system has 10/100 PHY only, it might not occur
1330 wrong behavior. Because PHY usually return timeout or
1331 useless data when polling gigabit status and gigabit
1332 control registers. This behavior won't affect the
1333 correctnessof 10/100 link speed update.
1336 Support for SMSC's LAN911x and LAN921x chips
1339 Define this to hold the physical address
1340 of the device (I/O space)
1342 CONFIG_SMC911X_32_BIT
1343 Define this if data bus is 32 bits
1345 CONFIG_SMC911X_16_BIT
1346 Define this if data bus is 16 bits. If your processor
1347 automatically converts one 32 bit word to two 16 bit
1348 words you may also try CONFIG_SMC911X_32_BIT.
1351 Support for Renesas on-chip Ethernet controller
1353 CONFIG_SH_ETHER_USE_PORT
1354 Define the number of ports to be used
1356 CONFIG_SH_ETHER_PHY_ADDR
1357 Define the ETH PHY's address
1359 CONFIG_SH_ETHER_CACHE_WRITEBACK
1360 If this option is set, the driver enables cache flush.
1364 Support for PWM modul on the imx6.
1368 Support TPM devices.
1370 CONFIG_TPM_TIS_INFINEON
1371 Support for Infineon i2c bus TPM devices. Only one device
1372 per system is supported at this time.
1374 CONFIG_TPM_TIS_I2C_BURST_LIMITATION
1375 Define the burst count bytes upper limit
1378 Support for STMicroelectronics TPM devices. Requires DM_TPM support.
1380 CONFIG_TPM_ST33ZP24_I2C
1381 Support for STMicroelectronics ST33ZP24 I2C devices.
1382 Requires TPM_ST33ZP24 and I2C.
1384 CONFIG_TPM_ST33ZP24_SPI
1385 Support for STMicroelectronics ST33ZP24 SPI devices.
1386 Requires TPM_ST33ZP24 and SPI.
1388 CONFIG_TPM_ATMEL_TWI
1389 Support for Atmel TWI TPM device. Requires I2C support.
1392 Support for generic parallel port TPM devices. Only one device
1393 per system is supported at this time.
1395 CONFIG_TPM_TIS_BASE_ADDRESS
1396 Base address where the generic TPM device is mapped
1397 to. Contemporary x86 systems usually map it at
1401 Add tpm monitor functions.
1402 Requires CONFIG_TPM. If CONFIG_TPM_AUTH_SESSIONS is set, also
1403 provides monitor access to authorized functions.
1406 Define this to enable the TPM support library which provides
1407 functional interfaces to some TPM commands.
1408 Requires support for a TPM device.
1410 CONFIG_TPM_AUTH_SESSIONS
1411 Define this to enable authorized functions in the TPM library.
1412 Requires CONFIG_TPM and CONFIG_SHA1.
1415 At the moment only the UHCI host controller is
1416 supported (PIP405, MIP405, MPC5200); define
1417 CONFIG_USB_UHCI to enable it.
1418 define CONFIG_USB_KEYBOARD to enable the USB Keyboard
1419 and define CONFIG_USB_STORAGE to enable the USB
1422 Supported are USB Keyboards and USB Floppy drives
1424 MPC5200 USB requires additional defines:
1426 for 528 MHz Clock: 0x0001bbbb
1430 for differential drivers: 0x00001000
1431 for single ended drivers: 0x00005000
1432 for differential drivers on PSC3: 0x00000100
1433 for single ended drivers on PSC3: 0x00004100
1434 CONFIG_SYS_USB_EVENT_POLL
1435 May be defined to allow interrupt polling
1436 instead of using asynchronous interrupts
1438 CONFIG_USB_EHCI_TXFIFO_THRESH enables setting of the
1439 txfilltuning field in the EHCI controller on reset.
1441 CONFIG_USB_DWC2_REG_ADDR the physical CPU address of the DWC2
1442 HW module registers.
1445 Define the below if you wish to use the USB console.
1446 Once firmware is rebuilt from a serial console issue the
1447 command "setenv stdin usbtty; setenv stdout usbtty" and
1448 attach your USB cable. The Unix command "dmesg" should print
1449 it has found a new device. The environment variable usbtty
1450 can be set to gserial or cdc_acm to enable your device to
1451 appear to a USB host as a Linux gserial device or a
1452 Common Device Class Abstract Control Model serial device.
1453 If you select usbtty = gserial you should be able to enumerate
1455 # modprobe usbserial vendor=0xVendorID product=0xProductID
1456 else if using cdc_acm, simply setting the environment
1457 variable usbtty to be cdc_acm should suffice. The following
1458 might be defined in YourBoardName.h
1461 Define this to build a UDC device
1464 Define this to have a tty type of device available to
1465 talk to the UDC device
1468 Define this to enable the high speed support for usb
1469 device and usbtty. If this feature is enabled, a routine
1470 int is_usbd_high_speed(void)
1471 also needs to be defined by the driver to dynamically poll
1472 whether the enumeration has succeded at high speed or full
1475 CONFIG_SYS_CONSOLE_IS_IN_ENV
1476 Define this if you want stdin, stdout &/or stderr to
1480 CONFIG_SYS_USB_EXTC_CLK 0xBLAH
1481 Derive USB clock from external clock "blah"
1482 - CONFIG_SYS_USB_EXTC_CLK 0x02
1484 If you have a USB-IF assigned VendorID then you may wish to
1485 define your own vendor specific values either in BoardName.h
1486 or directly in usbd_vendor_info.h. If you don't define
1487 CONFIG_USBD_MANUFACTURER, CONFIG_USBD_PRODUCT_NAME,
1488 CONFIG_USBD_VENDORID and CONFIG_USBD_PRODUCTID, then U-Boot
1489 should pretend to be a Linux device to it's target host.
1491 CONFIG_USBD_MANUFACTURER
1492 Define this string as the name of your company for
1493 - CONFIG_USBD_MANUFACTURER "my company"
1495 CONFIG_USBD_PRODUCT_NAME
1496 Define this string as the name of your product
1497 - CONFIG_USBD_PRODUCT_NAME "acme usb device"
1499 CONFIG_USBD_VENDORID
1500 Define this as your assigned Vendor ID from the USB
1501 Implementors Forum. This *must* be a genuine Vendor ID
1502 to avoid polluting the USB namespace.
1503 - CONFIG_USBD_VENDORID 0xFFFF
1505 CONFIG_USBD_PRODUCTID
1506 Define this as the unique Product ID
1508 - CONFIG_USBD_PRODUCTID 0xFFFF
1510 - ULPI Layer Support:
1511 The ULPI (UTMI Low Pin (count) Interface) PHYs are supported via
1512 the generic ULPI layer. The generic layer accesses the ULPI PHY
1513 via the platform viewport, so you need both the genric layer and
1514 the viewport enabled. Currently only Chipidea/ARC based
1515 viewport is supported.
1516 To enable the ULPI layer support, define CONFIG_USB_ULPI and
1517 CONFIG_USB_ULPI_VIEWPORT in your board configuration file.
1518 If your ULPI phy needs a different reference clock than the
1519 standard 24 MHz then you have to define CONFIG_ULPI_REF_CLK to
1520 the appropriate value in Hz.
1523 The MMC controller on the Intel PXA is supported. To
1524 enable this define CONFIG_MMC. The MMC can be
1525 accessed from the boot prompt by mapping the device
1526 to physical memory similar to flash. Command line is
1527 enabled with CONFIG_CMD_MMC. The MMC driver also works with
1528 the FAT fs. This is enabled with CONFIG_CMD_FAT.
1531 Support for Renesas on-chip MMCIF controller
1533 CONFIG_SH_MMCIF_ADDR
1534 Define the base address of MMCIF registers
1537 Define the clock frequency for MMCIF
1540 Enable the generic MMC driver
1542 CONFIG_SUPPORT_EMMC_BOOT
1543 Enable some additional features of the eMMC boot partitions.
1545 CONFIG_SUPPORT_EMMC_RPMB
1546 Enable the commands for reading, writing and programming the
1547 key for the Replay Protection Memory Block partition in eMMC.
1549 - USB Device Firmware Update (DFU) class support:
1550 CONFIG_USB_FUNCTION_DFU
1551 This enables the USB portion of the DFU USB class
1554 This enables the command "dfu" which is used to have
1555 U-Boot create a DFU class device via USB. This command
1556 requires that the "dfu_alt_info" environment variable be
1557 set and define the alt settings to expose to the host.
1560 This enables support for exposing (e)MMC devices via DFU.
1563 This enables support for exposing NAND devices via DFU.
1566 This enables support for exposing RAM via DFU.
1567 Note: DFU spec refer to non-volatile memory usage, but
1568 allow usages beyond the scope of spec - here RAM usage,
1569 one that would help mostly the developer.
1571 CONFIG_SYS_DFU_DATA_BUF_SIZE
1572 Dfu transfer uses a buffer before writing data to the
1573 raw storage device. Make the size (in bytes) of this buffer
1574 configurable. The size of this buffer is also configurable
1575 through the "dfu_bufsiz" environment variable.
1577 CONFIG_SYS_DFU_MAX_FILE_SIZE
1578 When updating files rather than the raw storage device,
1579 we use a static buffer to copy the file into and then write
1580 the buffer once we've been given the whole file. Define
1581 this to the maximum filesize (in bytes) for the buffer.
1582 Default is 4 MiB if undefined.
1584 DFU_DEFAULT_POLL_TIMEOUT
1585 Poll timeout [ms], is the timeout a device can send to the
1586 host. The host must wait for this timeout before sending
1587 a subsequent DFU_GET_STATUS request to the device.
1589 DFU_MANIFEST_POLL_TIMEOUT
1590 Poll timeout [ms], which the device sends to the host when
1591 entering dfuMANIFEST state. Host waits this timeout, before
1592 sending again an USB request to the device.
1594 - USB Device Android Fastboot support:
1595 CONFIG_USB_FUNCTION_FASTBOOT
1596 This enables the USB part of the fastboot gadget
1599 This enables the command "fastboot" which enables the Android
1600 fastboot mode for the platform's USB device. Fastboot is a USB
1601 protocol for downloading images, flashing and device control
1602 used on Android devices.
1603 See doc/README.android-fastboot for more information.
1605 CONFIG_ANDROID_BOOT_IMAGE
1606 This enables support for booting images which use the Android
1607 image format header.
1609 CONFIG_FASTBOOT_BUF_ADDR
1610 The fastboot protocol requires a large memory buffer for
1611 downloads. Define this to the starting RAM address to use for
1614 CONFIG_FASTBOOT_BUF_SIZE
1615 The fastboot protocol requires a large memory buffer for
1616 downloads. This buffer should be as large as possible for a
1617 platform. Define this to the size available RAM for fastboot.
1619 CONFIG_FASTBOOT_FLASH
1620 The fastboot protocol includes a "flash" command for writing
1621 the downloaded image to a non-volatile storage device. Define
1622 this to enable the "fastboot flash" command.
1624 CONFIG_FASTBOOT_FLASH_MMC_DEV
1625 The fastboot "flash" command requires additional information
1626 regarding the non-volatile storage device. Define this to
1627 the eMMC device that fastboot should use to store the image.
1629 CONFIG_FASTBOOT_GPT_NAME
1630 The fastboot "flash" command supports writing the downloaded
1631 image to the Protective MBR and the Primary GUID Partition
1632 Table. (Additionally, this downloaded image is post-processed
1633 to generate and write the Backup GUID Partition Table.)
1634 This occurs when the specified "partition name" on the
1635 "fastboot flash" command line matches this value.
1636 The default is "gpt" if undefined.
1638 CONFIG_FASTBOOT_MBR_NAME
1639 The fastboot "flash" command supports writing the downloaded
1641 This occurs when the "partition name" specified on the
1642 "fastboot flash" command line matches this value.
1643 If not defined the default value "mbr" is used.
1645 - Journaling Flash filesystem support:
1647 Define these for a default partition on a NAND device
1649 CONFIG_SYS_JFFS2_FIRST_SECTOR,
1650 CONFIG_SYS_JFFS2_FIRST_BANK, CONFIG_SYS_JFFS2_NUM_BANKS
1651 Define these for a default partition on a NOR device
1653 - FAT(File Allocation Table) filesystem write function support:
1656 Define this to enable support for saving memory data as a
1657 file in FAT formatted partition.
1659 This will also enable the command "fatwrite" enabling the
1660 user to write files to FAT.
1662 CBFS (Coreboot Filesystem) support
1665 Define this to enable support for reading from a Coreboot
1666 filesystem. Available commands are cbfsinit, cbfsinfo, cbfsls
1669 - FAT(File Allocation Table) filesystem cluster size:
1670 CONFIG_FS_FAT_MAX_CLUSTSIZE
1672 Define the max cluster size for fat operations else
1673 a default value of 65536 will be defined.
1676 See Kconfig help for available keyboard drivers.
1680 Define this to enable a custom keyboard support.
1681 This simply calls drv_keyboard_init() which must be
1682 defined in your board-specific files. This option is deprecated
1683 and is only used by novena. For new boards, use driver model
1689 Define this to enable video support (for output to
1692 CONFIG_VIDEO_CT69000
1694 Enable Chips & Technologies 69000 Video chip
1696 CONFIG_VIDEO_SMI_LYNXEM
1697 Enable Silicon Motion SMI 712/710/810 Video chip. The
1698 video output is selected via environment 'videoout'
1699 (1 = LCD and 2 = CRT). If videoout is undefined, CRT is
1702 For the CT69000 and SMI_LYNXEM drivers, videomode is
1703 selected via environment 'videomode'. Two different ways
1705 - "videomode=num" 'num' is a standard LiLo mode numbers.
1706 Following standard modes are supported (* is default):
1708 Colors 640x480 800x600 1024x768 1152x864 1280x1024
1709 -------------+---------------------------------------------
1710 8 bits | 0x301* 0x303 0x305 0x161 0x307
1711 15 bits | 0x310 0x313 0x316 0x162 0x319
1712 16 bits | 0x311 0x314 0x317 0x163 0x31A
1713 24 bits | 0x312 0x315 0x318 ? 0x31B
1714 -------------+---------------------------------------------
1715 (i.e. setenv videomode 317; saveenv; reset;)
1717 - "videomode=bootargs" all the video parameters are parsed
1718 from the bootargs. (See drivers/video/videomodes.c)
1721 CONFIG_VIDEO_SED13806
1722 Enable Epson SED13806 driver. This driver supports 8bpp
1723 and 16bpp modes defined by CONFIG_VIDEO_SED13806_8BPP
1724 or CONFIG_VIDEO_SED13806_16BPP
1727 Enable the Freescale DIU video driver. Reference boards for
1728 SOCs that have a DIU should define this macro to enable DIU
1729 support, and should also define these other macros:
1735 CONFIG_VIDEO_SW_CURSOR
1736 CONFIG_VGA_AS_SINGLE_DEVICE
1738 CONFIG_VIDEO_BMP_LOGO
1740 The DIU driver will look for the 'video-mode' environment
1741 variable, and if defined, enable the DIU as a console during
1742 boot. See the documentation file doc/README.video for a
1743 description of this variable.
1745 - LCD Support: CONFIG_LCD
1747 Define this to enable LCD support (for output to LCD
1748 display); also select one of the supported displays
1749 by defining one of these:
1753 HITACHI TX09D70VM1CCA, 3.5", 240x320.
1755 CONFIG_NEC_NL6448AC33:
1757 NEC NL6448AC33-18. Active, color, single scan.
1759 CONFIG_NEC_NL6448BC20
1761 NEC NL6448BC20-08. 6.5", 640x480.
1762 Active, color, single scan.
1764 CONFIG_NEC_NL6448BC33_54
1766 NEC NL6448BC33-54. 10.4", 640x480.
1767 Active, color, single scan.
1771 Sharp 320x240. Active, color, single scan.
1772 It isn't 16x9, and I am not sure what it is.
1774 CONFIG_SHARP_LQ64D341
1776 Sharp LQ64D341 display, 640x480.
1777 Active, color, single scan.
1781 HLD1045 display, 640x480.
1782 Active, color, single scan.
1786 Optrex CBL50840-2 NF-FW 99 22 M5
1788 Hitachi LMG6912RPFC-00T
1792 320x240. Black & white.
1794 Normally display is black on white background; define
1795 CONFIG_SYS_WHITE_ON_BLACK to get it inverted.
1797 CONFIG_LCD_ALIGNMENT
1799 Normally the LCD is page-aligned (typically 4KB). If this is
1800 defined then the LCD will be aligned to this value instead.
1801 For ARM it is sometimes useful to use MMU_SECTION_SIZE
1802 here, since it is cheaper to change data cache settings on
1803 a per-section basis.
1805 CONFIG_CONSOLE_SCROLL_LINES
1807 When the console need to be scrolled, this is the number of
1808 lines to scroll by. It defaults to 1. Increasing this makes
1809 the console jump but can help speed up operation when scrolling
1814 Sometimes, for example if the display is mounted in portrait
1815 mode or even if it's mounted landscape but rotated by 180degree,
1816 we need to rotate our content of the display relative to the
1817 framebuffer, so that user can read the messages which are
1819 Once CONFIG_LCD_ROTATION is defined, the lcd_console will be
1820 initialized with a given rotation from "vl_rot" out of
1821 "vidinfo_t" which is provided by the board specific code.
1822 The value for vl_rot is coded as following (matching to
1823 fbcon=rotate:<n> linux-kernel commandline):
1824 0 = no rotation respectively 0 degree
1825 1 = 90 degree rotation
1826 2 = 180 degree rotation
1827 3 = 270 degree rotation
1829 If CONFIG_LCD_ROTATION is not defined, the console will be
1830 initialized with 0degree rotation.
1834 Support drawing of RLE8-compressed bitmaps on the LCD.
1838 Enables an 'i2c edid' command which can read EDID
1839 information over I2C from an attached LCD display.
1841 - Splash Screen Support: CONFIG_SPLASH_SCREEN
1843 If this option is set, the environment is checked for
1844 a variable "splashimage". If found, the usual display
1845 of logo, copyright and system information on the LCD
1846 is suppressed and the BMP image at the address
1847 specified in "splashimage" is loaded instead. The
1848 console is redirected to the "nulldev", too. This
1849 allows for a "silent" boot where a splash screen is
1850 loaded very quickly after power-on.
1852 CONFIG_SPLASHIMAGE_GUARD
1854 If this option is set, then U-Boot will prevent the environment
1855 variable "splashimage" from being set to a problematic address
1856 (see doc/README.displaying-bmps).
1857 This option is useful for targets where, due to alignment
1858 restrictions, an improperly aligned BMP image will cause a data
1859 abort. If you think you will not have problems with unaligned
1860 accesses (for example because your toolchain prevents them)
1861 there is no need to set this option.
1863 CONFIG_SPLASH_SCREEN_ALIGN
1865 If this option is set the splash image can be freely positioned
1866 on the screen. Environment variable "splashpos" specifies the
1867 position as "x,y". If a positive number is given it is used as
1868 number of pixel from left/top. If a negative number is given it
1869 is used as number of pixel from right/bottom. You can also
1870 specify 'm' for centering the image.
1873 setenv splashpos m,m
1874 => image at center of screen
1876 setenv splashpos 30,20
1877 => image at x = 30 and y = 20
1879 setenv splashpos -10,m
1880 => vertically centered image
1881 at x = dspWidth - bmpWidth - 9
1883 - Gzip compressed BMP image support: CONFIG_VIDEO_BMP_GZIP
1885 If this option is set, additionally to standard BMP
1886 images, gzipped BMP images can be displayed via the
1887 splashscreen support or the bmp command.
1889 - Run length encoded BMP image (RLE8) support: CONFIG_VIDEO_BMP_RLE8
1891 If this option is set, 8-bit RLE compressed BMP images
1892 can be displayed via the splashscreen support or the
1895 - Do compressing for memory range:
1898 If this option is set, it would use zlib deflate method
1899 to compress the specified memory at its best effort.
1901 - Compression support:
1904 Enabled by default to support gzip compressed images.
1908 If this option is set, support for bzip2 compressed
1909 images is included. If not, only uncompressed and gzip
1910 compressed images are supported.
1912 NOTE: the bzip2 algorithm requires a lot of RAM, so
1913 the malloc area (as defined by CONFIG_SYS_MALLOC_LEN) should
1918 If this option is set, support for lzma compressed
1921 Note: The LZMA algorithm adds between 2 and 4KB of code and it
1922 requires an amount of dynamic memory that is given by the
1925 (1846 + 768 << (lc + lp)) * sizeof(uint16)
1927 Where lc and lp stand for, respectively, Literal context bits
1928 and Literal pos bits.
1930 This value is upper-bounded by 14MB in the worst case. Anyway,
1931 for a ~4MB large kernel image, we have lc=3 and lp=0 for a
1932 total amount of (1846 + 768 << (3 + 0)) * 2 = ~41KB... that is
1933 a very small buffer.
1935 Use the lzmainfo tool to determinate the lc and lp values and
1936 then calculate the amount of needed dynamic memory (ensuring
1937 the appropriate CONFIG_SYS_MALLOC_LEN value).
1941 If this option is set, support for LZO compressed images
1947 The address of PHY on MII bus.
1949 CONFIG_PHY_CLOCK_FREQ (ppc4xx)
1951 The clock frequency of the MII bus
1955 If this option is set, support for speed/duplex
1956 detection of gigabit PHY is included.
1958 CONFIG_PHY_RESET_DELAY
1960 Some PHY like Intel LXT971A need extra delay after
1961 reset before any MII register access is possible.
1962 For such PHY, set this option to the usec delay
1963 required. (minimum 300usec for LXT971A)
1965 CONFIG_PHY_CMD_DELAY (ppc4xx)
1967 Some PHY like Intel LXT971A need extra delay after
1968 command issued before MII status register can be read
1973 Define a default value for the IP address to use for
1974 the default Ethernet interface, in case this is not
1975 determined through e.g. bootp.
1976 (Environment variable "ipaddr")
1978 - Server IP address:
1981 Defines a default value for the IP address of a TFTP
1982 server to contact when using the "tftboot" command.
1983 (Environment variable "serverip")
1985 CONFIG_KEEP_SERVERADDR
1987 Keeps the server's MAC address, in the env 'serveraddr'
1988 for passing to bootargs (like Linux's netconsole option)
1990 - Gateway IP address:
1993 Defines a default value for the IP address of the
1994 default router where packets to other networks are
1996 (Environment variable "gatewayip")
2001 Defines a default value for the subnet mask (or
2002 routing prefix) which is used to determine if an IP
2003 address belongs to the local subnet or needs to be
2004 forwarded through a router.
2005 (Environment variable "netmask")
2007 - Multicast TFTP Mode:
2010 Defines whether you want to support multicast TFTP as per
2011 rfc-2090; for example to work with atftp. Lets lots of targets
2012 tftp down the same boot image concurrently. Note: the Ethernet
2013 driver in use must provide a function: mcast() to join/leave a
2016 - BOOTP Recovery Mode:
2017 CONFIG_BOOTP_RANDOM_DELAY
2019 If you have many targets in a network that try to
2020 boot using BOOTP, you may want to avoid that all
2021 systems send out BOOTP requests at precisely the same
2022 moment (which would happen for instance at recovery
2023 from a power failure, when all systems will try to
2024 boot, thus flooding the BOOTP server. Defining
2025 CONFIG_BOOTP_RANDOM_DELAY causes a random delay to be
2026 inserted before sending out BOOTP requests. The
2027 following delays are inserted then:
2029 1st BOOTP request: delay 0 ... 1 sec
2030 2nd BOOTP request: delay 0 ... 2 sec
2031 3rd BOOTP request: delay 0 ... 4 sec
2033 BOOTP requests: delay 0 ... 8 sec
2035 CONFIG_BOOTP_ID_CACHE_SIZE
2037 BOOTP packets are uniquely identified using a 32-bit ID. The
2038 server will copy the ID from client requests to responses and
2039 U-Boot will use this to determine if it is the destination of
2040 an incoming response. Some servers will check that addresses
2041 aren't in use before handing them out (usually using an ARP
2042 ping) and therefore take up to a few hundred milliseconds to
2043 respond. Network congestion may also influence the time it
2044 takes for a response to make it back to the client. If that
2045 time is too long, U-Boot will retransmit requests. In order
2046 to allow earlier responses to still be accepted after these
2047 retransmissions, U-Boot's BOOTP client keeps a small cache of
2048 IDs. The CONFIG_BOOTP_ID_CACHE_SIZE controls the size of this
2049 cache. The default is to keep IDs for up to four outstanding
2050 requests. Increasing this will allow U-Boot to accept offers
2051 from a BOOTP client in networks with unusually high latency.
2053 - DHCP Advanced Options:
2054 You can fine tune the DHCP functionality by defining
2055 CONFIG_BOOTP_* symbols:
2057 CONFIG_BOOTP_SUBNETMASK
2058 CONFIG_BOOTP_GATEWAY
2059 CONFIG_BOOTP_HOSTNAME
2060 CONFIG_BOOTP_NISDOMAIN
2061 CONFIG_BOOTP_BOOTPATH
2062 CONFIG_BOOTP_BOOTFILESIZE
2065 CONFIG_BOOTP_SEND_HOSTNAME
2066 CONFIG_BOOTP_NTPSERVER
2067 CONFIG_BOOTP_TIMEOFFSET
2068 CONFIG_BOOTP_VENDOREX
2069 CONFIG_BOOTP_MAY_FAIL
2071 CONFIG_BOOTP_SERVERIP - TFTP server will be the serverip
2072 environment variable, not the BOOTP server.
2074 CONFIG_BOOTP_MAY_FAIL - If the DHCP server is not found
2075 after the configured retry count, the call will fail
2076 instead of starting over. This can be used to fail over
2077 to Link-local IP address configuration if the DHCP server
2080 CONFIG_BOOTP_DNS2 - If a DHCP client requests the DNS
2081 serverip from a DHCP server, it is possible that more
2082 than one DNS serverip is offered to the client.
2083 If CONFIG_BOOTP_DNS2 is enabled, the secondary DNS
2084 serverip will be stored in the additional environment
2085 variable "dnsip2". The first DNS serverip is always
2086 stored in the variable "dnsip", when CONFIG_BOOTP_DNS
2089 CONFIG_BOOTP_SEND_HOSTNAME - Some DHCP servers are capable
2090 to do a dynamic update of a DNS server. To do this, they
2091 need the hostname of the DHCP requester.
2092 If CONFIG_BOOTP_SEND_HOSTNAME is defined, the content
2093 of the "hostname" environment variable is passed as
2094 option 12 to the DHCP server.
2096 CONFIG_BOOTP_DHCP_REQUEST_DELAY
2098 A 32bit value in microseconds for a delay between
2099 receiving a "DHCP Offer" and sending the "DHCP Request".
2100 This fixes a problem with certain DHCP servers that don't
2101 respond 100% of the time to a "DHCP request". E.g. On an
2102 AT91RM9200 processor running at 180MHz, this delay needed
2103 to be *at least* 15,000 usec before a Windows Server 2003
2104 DHCP server would reply 100% of the time. I recommend at
2105 least 50,000 usec to be safe. The alternative is to hope
2106 that one of the retries will be successful but note that
2107 the DHCP timeout and retry process takes a longer than
2110 - Link-local IP address negotiation:
2111 Negotiate with other link-local clients on the local network
2112 for an address that doesn't require explicit configuration.
2113 This is especially useful if a DHCP server cannot be guaranteed
2114 to exist in all environments that the device must operate.
2116 See doc/README.link-local for more information.
2119 CONFIG_CDP_DEVICE_ID
2121 The device id used in CDP trigger frames.
2123 CONFIG_CDP_DEVICE_ID_PREFIX
2125 A two character string which is prefixed to the MAC address
2130 A printf format string which contains the ascii name of
2131 the port. Normally is set to "eth%d" which sets
2132 eth0 for the first Ethernet, eth1 for the second etc.
2134 CONFIG_CDP_CAPABILITIES
2136 A 32bit integer which indicates the device capabilities;
2137 0x00000010 for a normal host which does not forwards.
2141 An ascii string containing the version of the software.
2145 An ascii string containing the name of the platform.
2149 A 32bit integer sent on the trigger.
2151 CONFIG_CDP_POWER_CONSUMPTION
2153 A 16bit integer containing the power consumption of the
2154 device in .1 of milliwatts.
2156 CONFIG_CDP_APPLIANCE_VLAN_TYPE
2158 A byte containing the id of the VLAN.
2160 - Status LED: CONFIG_STATUS_LED
2162 Several configurations allow to display the current
2163 status using a LED. For instance, the LED will blink
2164 fast while running U-Boot code, stop blinking as
2165 soon as a reply to a BOOTP request was received, and
2166 start blinking slow once the Linux kernel is running
2167 (supported by a status LED driver in the Linux
2168 kernel). Defining CONFIG_STATUS_LED enables this
2174 The status LED can be connected to a GPIO pin.
2175 In such cases, the gpio_led driver can be used as a
2176 status LED backend implementation. Define CONFIG_GPIO_LED
2177 to include the gpio_led driver in the U-Boot binary.
2179 CONFIG_GPIO_LED_INVERTED_TABLE
2180 Some GPIO connected LEDs may have inverted polarity in which
2181 case the GPIO high value corresponds to LED off state and
2182 GPIO low value corresponds to LED on state.
2183 In such cases CONFIG_GPIO_LED_INVERTED_TABLE may be defined
2184 with a list of GPIO LEDs that have inverted polarity.
2186 - CAN Support: CONFIG_CAN_DRIVER
2188 Defining CONFIG_CAN_DRIVER enables CAN driver support
2189 on those systems that support this (optional)
2190 feature, like the TQM8xxL modules.
2192 - I2C Support: CONFIG_SYS_I2C
2194 This enable the NEW i2c subsystem, and will allow you to use
2195 i2c commands at the u-boot command line (as long as you set
2196 CONFIG_CMD_I2C in CONFIG_COMMANDS) and communicate with i2c
2197 based realtime clock chips or other i2c devices. See
2198 common/cmd_i2c.c for a description of the command line
2201 ported i2c driver to the new framework:
2202 - drivers/i2c/soft_i2c.c:
2203 - activate first bus with CONFIG_SYS_I2C_SOFT define
2204 CONFIG_SYS_I2C_SOFT_SPEED and CONFIG_SYS_I2C_SOFT_SLAVE
2205 for defining speed and slave address
2206 - activate second bus with I2C_SOFT_DECLARATIONS2 define
2207 CONFIG_SYS_I2C_SOFT_SPEED_2 and CONFIG_SYS_I2C_SOFT_SLAVE_2
2208 for defining speed and slave address
2209 - activate third bus with I2C_SOFT_DECLARATIONS3 define
2210 CONFIG_SYS_I2C_SOFT_SPEED_3 and CONFIG_SYS_I2C_SOFT_SLAVE_3
2211 for defining speed and slave address
2212 - activate fourth bus with I2C_SOFT_DECLARATIONS4 define
2213 CONFIG_SYS_I2C_SOFT_SPEED_4 and CONFIG_SYS_I2C_SOFT_SLAVE_4
2214 for defining speed and slave address
2216 - drivers/i2c/fsl_i2c.c:
2217 - activate i2c driver with CONFIG_SYS_I2C_FSL
2218 define CONFIG_SYS_FSL_I2C_OFFSET for setting the register
2219 offset CONFIG_SYS_FSL_I2C_SPEED for the i2c speed and
2220 CONFIG_SYS_FSL_I2C_SLAVE for the slave addr of the first
2222 - If your board supports a second fsl i2c bus, define
2223 CONFIG_SYS_FSL_I2C2_OFFSET for the register offset
2224 CONFIG_SYS_FSL_I2C2_SPEED for the speed and
2225 CONFIG_SYS_FSL_I2C2_SLAVE for the slave address of the
2228 - drivers/i2c/tegra_i2c.c:
2229 - activate this driver with CONFIG_SYS_I2C_TEGRA
2230 - This driver adds 4 i2c buses with a fix speed from
2231 100000 and the slave addr 0!
2233 - drivers/i2c/ppc4xx_i2c.c
2234 - activate this driver with CONFIG_SYS_I2C_PPC4XX
2235 - CONFIG_SYS_I2C_PPC4XX_CH0 activate hardware channel 0
2236 - CONFIG_SYS_I2C_PPC4XX_CH1 activate hardware channel 1
2238 - drivers/i2c/i2c_mxc.c
2239 - activate this driver with CONFIG_SYS_I2C_MXC
2240 - enable bus 1 with CONFIG_SYS_I2C_MXC_I2C1
2241 - enable bus 2 with CONFIG_SYS_I2C_MXC_I2C2
2242 - enable bus 3 with CONFIG_SYS_I2C_MXC_I2C3
2243 - enable bus 4 with CONFIG_SYS_I2C_MXC_I2C4
2244 - define speed for bus 1 with CONFIG_SYS_MXC_I2C1_SPEED
2245 - define slave for bus 1 with CONFIG_SYS_MXC_I2C1_SLAVE
2246 - define speed for bus 2 with CONFIG_SYS_MXC_I2C2_SPEED
2247 - define slave for bus 2 with CONFIG_SYS_MXC_I2C2_SLAVE
2248 - define speed for bus 3 with CONFIG_SYS_MXC_I2C3_SPEED
2249 - define slave for bus 3 with CONFIG_SYS_MXC_I2C3_SLAVE
2250 - define speed for bus 4 with CONFIG_SYS_MXC_I2C4_SPEED
2251 - define slave for bus 4 with CONFIG_SYS_MXC_I2C4_SLAVE
2252 If those defines are not set, default value is 100000
2253 for speed, and 0 for slave.
2255 - drivers/i2c/rcar_i2c.c:
2256 - activate this driver with CONFIG_SYS_I2C_RCAR
2257 - This driver adds 4 i2c buses
2259 - CONFIG_SYS_RCAR_I2C0_BASE for setting the register channel 0
2260 - CONFIG_SYS_RCAR_I2C0_SPEED for for the speed channel 0
2261 - CONFIG_SYS_RCAR_I2C1_BASE for setting the register channel 1
2262 - CONFIG_SYS_RCAR_I2C1_SPEED for for the speed channel 1
2263 - CONFIG_SYS_RCAR_I2C2_BASE for setting the register channel 2
2264 - CONFIG_SYS_RCAR_I2C2_SPEED for for the speed channel 2
2265 - CONFIG_SYS_RCAR_I2C3_BASE for setting the register channel 3
2266 - CONFIG_SYS_RCAR_I2C3_SPEED for for the speed channel 3
2267 - CONFIF_SYS_RCAR_I2C_NUM_CONTROLLERS for number of i2c buses
2269 - drivers/i2c/sh_i2c.c:
2270 - activate this driver with CONFIG_SYS_I2C_SH
2271 - This driver adds from 2 to 5 i2c buses
2273 - CONFIG_SYS_I2C_SH_BASE0 for setting the register channel 0
2274 - CONFIG_SYS_I2C_SH_SPEED0 for for the speed channel 0
2275 - CONFIG_SYS_I2C_SH_BASE1 for setting the register channel 1
2276 - CONFIG_SYS_I2C_SH_SPEED1 for for the speed channel 1
2277 - CONFIG_SYS_I2C_SH_BASE2 for setting the register channel 2
2278 - CONFIG_SYS_I2C_SH_SPEED2 for for the speed channel 2
2279 - CONFIG_SYS_I2C_SH_BASE3 for setting the register channel 3
2280 - CONFIG_SYS_I2C_SH_SPEED3 for for the speed channel 3
2281 - CONFIG_SYS_I2C_SH_BASE4 for setting the register channel 4
2282 - CONFIG_SYS_I2C_SH_SPEED4 for for the speed channel 4
2283 - CONFIG_SYS_I2C_SH_NUM_CONTROLLERS for number of i2c buses
2285 - drivers/i2c/omap24xx_i2c.c
2286 - activate this driver with CONFIG_SYS_I2C_OMAP24XX
2287 - CONFIG_SYS_OMAP24_I2C_SPEED speed channel 0
2288 - CONFIG_SYS_OMAP24_I2C_SLAVE slave addr channel 0
2289 - CONFIG_SYS_OMAP24_I2C_SPEED1 speed channel 1
2290 - CONFIG_SYS_OMAP24_I2C_SLAVE1 slave addr channel 1
2291 - CONFIG_SYS_OMAP24_I2C_SPEED2 speed channel 2
2292 - CONFIG_SYS_OMAP24_I2C_SLAVE2 slave addr channel 2
2293 - CONFIG_SYS_OMAP24_I2C_SPEED3 speed channel 3
2294 - CONFIG_SYS_OMAP24_I2C_SLAVE3 slave addr channel 3
2295 - CONFIG_SYS_OMAP24_I2C_SPEED4 speed channel 4
2296 - CONFIG_SYS_OMAP24_I2C_SLAVE4 slave addr channel 4
2298 - drivers/i2c/zynq_i2c.c
2299 - activate this driver with CONFIG_SYS_I2C_ZYNQ
2300 - set CONFIG_SYS_I2C_ZYNQ_SPEED for speed setting
2301 - set CONFIG_SYS_I2C_ZYNQ_SLAVE for slave addr
2303 - drivers/i2c/s3c24x0_i2c.c:
2304 - activate this driver with CONFIG_SYS_I2C_S3C24X0
2305 - This driver adds i2c buses (11 for Exynos5250, Exynos5420
2306 9 i2c buses for Exynos4 and 1 for S3C24X0 SoCs from Samsung)
2307 with a fix speed from 100000 and the slave addr 0!
2309 - drivers/i2c/ihs_i2c.c
2310 - activate this driver with CONFIG_SYS_I2C_IHS
2311 - CONFIG_SYS_I2C_IHS_CH0 activate hardware channel 0
2312 - CONFIG_SYS_I2C_IHS_SPEED_0 speed channel 0
2313 - CONFIG_SYS_I2C_IHS_SLAVE_0 slave addr channel 0
2314 - CONFIG_SYS_I2C_IHS_CH1 activate hardware channel 1
2315 - CONFIG_SYS_I2C_IHS_SPEED_1 speed channel 1
2316 - CONFIG_SYS_I2C_IHS_SLAVE_1 slave addr channel 1
2317 - CONFIG_SYS_I2C_IHS_CH2 activate hardware channel 2
2318 - CONFIG_SYS_I2C_IHS_SPEED_2 speed channel 2
2319 - CONFIG_SYS_I2C_IHS_SLAVE_2 slave addr channel 2
2320 - CONFIG_SYS_I2C_IHS_CH3 activate hardware channel 3
2321 - CONFIG_SYS_I2C_IHS_SPEED_3 speed channel 3
2322 - CONFIG_SYS_I2C_IHS_SLAVE_3 slave addr channel 3
2323 - activate dual channel with CONFIG_SYS_I2C_IHS_DUAL
2324 - CONFIG_SYS_I2C_IHS_SPEED_0_1 speed channel 0_1
2325 - CONFIG_SYS_I2C_IHS_SLAVE_0_1 slave addr channel 0_1
2326 - CONFIG_SYS_I2C_IHS_SPEED_1_1 speed channel 1_1
2327 - CONFIG_SYS_I2C_IHS_SLAVE_1_1 slave addr channel 1_1
2328 - CONFIG_SYS_I2C_IHS_SPEED_2_1 speed channel 2_1
2329 - CONFIG_SYS_I2C_IHS_SLAVE_2_1 slave addr channel 2_1
2330 - CONFIG_SYS_I2C_IHS_SPEED_3_1 speed channel 3_1
2331 - CONFIG_SYS_I2C_IHS_SLAVE_3_1 slave addr channel 3_1
2335 CONFIG_SYS_NUM_I2C_BUSES
2336 Hold the number of i2c buses you want to use.
2338 CONFIG_SYS_I2C_DIRECT_BUS
2339 define this, if you don't use i2c muxes on your hardware.
2340 if CONFIG_SYS_I2C_MAX_HOPS is not defined or == 0 you can
2343 CONFIG_SYS_I2C_MAX_HOPS
2344 define how many muxes are maximal consecutively connected
2345 on one i2c bus. If you not use i2c muxes, omit this
2348 CONFIG_SYS_I2C_BUSES
2349 hold a list of buses you want to use, only used if
2350 CONFIG_SYS_I2C_DIRECT_BUS is not defined, for example
2351 a board with CONFIG_SYS_I2C_MAX_HOPS = 1 and
2352 CONFIG_SYS_NUM_I2C_BUSES = 9:
2354 CONFIG_SYS_I2C_BUSES {{0, {I2C_NULL_HOP}}, \
2355 {0, {{I2C_MUX_PCA9547, 0x70, 1}}}, \
2356 {0, {{I2C_MUX_PCA9547, 0x70, 2}}}, \
2357 {0, {{I2C_MUX_PCA9547, 0x70, 3}}}, \
2358 {0, {{I2C_MUX_PCA9547, 0x70, 4}}}, \
2359 {0, {{I2C_MUX_PCA9547, 0x70, 5}}}, \
2360 {1, {I2C_NULL_HOP}}, \
2361 {1, {{I2C_MUX_PCA9544, 0x72, 1}}}, \
2362 {1, {{I2C_MUX_PCA9544, 0x72, 2}}}, \
2366 bus 0 on adapter 0 without a mux
2367 bus 1 on adapter 0 with a PCA9547 on address 0x70 port 1
2368 bus 2 on adapter 0 with a PCA9547 on address 0x70 port 2
2369 bus 3 on adapter 0 with a PCA9547 on address 0x70 port 3
2370 bus 4 on adapter 0 with a PCA9547 on address 0x70 port 4
2371 bus 5 on adapter 0 with a PCA9547 on address 0x70 port 5
2372 bus 6 on adapter 1 without a mux
2373 bus 7 on adapter 1 with a PCA9544 on address 0x72 port 1
2374 bus 8 on adapter 1 with a PCA9544 on address 0x72 port 2
2376 If you do not have i2c muxes on your board, omit this define.
2378 - Legacy I2C Support: CONFIG_HARD_I2C
2380 NOTE: It is intended to move drivers to CONFIG_SYS_I2C which
2381 provides the following compelling advantages:
2383 - more than one i2c adapter is usable
2384 - approved multibus support
2385 - better i2c mux support
2387 ** Please consider updating your I2C driver now. **
2389 These enable legacy I2C serial bus commands. Defining
2390 CONFIG_HARD_I2C will include the appropriate I2C driver
2391 for the selected CPU.
2393 This will allow you to use i2c commands at the u-boot
2394 command line (as long as you set CONFIG_CMD_I2C in
2395 CONFIG_COMMANDS) and communicate with i2c based realtime
2396 clock chips. See common/cmd_i2c.c for a description of the
2397 command line interface.
2399 CONFIG_HARD_I2C selects a hardware I2C controller.
2401 There are several other quantities that must also be
2402 defined when you define CONFIG_HARD_I2C.
2404 In both cases you will need to define CONFIG_SYS_I2C_SPEED
2405 to be the frequency (in Hz) at which you wish your i2c bus
2406 to run and CONFIG_SYS_I2C_SLAVE to be the address of this node (ie
2407 the CPU's i2c node address).
2409 Now, the u-boot i2c code for the mpc8xx
2410 (arch/powerpc/cpu/mpc8xx/i2c.c) sets the CPU up as a master node
2411 and so its address should therefore be cleared to 0 (See,
2412 eg, MPC823e User's Manual p.16-473). So, set
2413 CONFIG_SYS_I2C_SLAVE to 0.
2415 CONFIG_SYS_I2C_INIT_MPC5XXX
2417 When a board is reset during an i2c bus transfer
2418 chips might think that the current transfer is still
2419 in progress. Reset the slave devices by sending start
2420 commands until the slave device responds.
2422 That's all that's required for CONFIG_HARD_I2C.
2424 If you use the software i2c interface (CONFIG_SYS_I2C_SOFT)
2425 then the following macros need to be defined (examples are
2426 from include/configs/lwmon.h):
2430 (Optional). Any commands necessary to enable the I2C
2431 controller or configure ports.
2433 eg: #define I2C_INIT (immr->im_cpm.cp_pbdir |= PB_SCL)
2437 (Only for MPC8260 CPU). The I/O port to use (the code
2438 assumes both bits are on the same port). Valid values
2439 are 0..3 for ports A..D.
2443 The code necessary to make the I2C data line active
2444 (driven). If the data line is open collector, this
2447 eg: #define I2C_ACTIVE (immr->im_cpm.cp_pbdir |= PB_SDA)
2451 The code necessary to make the I2C data line tri-stated
2452 (inactive). If the data line is open collector, this
2455 eg: #define I2C_TRISTATE (immr->im_cpm.cp_pbdir &= ~PB_SDA)
2459 Code that returns true if the I2C data line is high,
2462 eg: #define I2C_READ ((immr->im_cpm.cp_pbdat & PB_SDA) != 0)
2466 If <bit> is true, sets the I2C data line high. If it
2467 is false, it clears it (low).
2469 eg: #define I2C_SDA(bit) \
2470 if(bit) immr->im_cpm.cp_pbdat |= PB_SDA; \
2471 else immr->im_cpm.cp_pbdat &= ~PB_SDA
2475 If <bit> is true, sets the I2C clock line high. If it
2476 is false, it clears it (low).
2478 eg: #define I2C_SCL(bit) \
2479 if(bit) immr->im_cpm.cp_pbdat |= PB_SCL; \
2480 else immr->im_cpm.cp_pbdat &= ~PB_SCL
2484 This delay is invoked four times per clock cycle so this
2485 controls the rate of data transfer. The data rate thus
2486 is 1 / (I2C_DELAY * 4). Often defined to be something
2489 #define I2C_DELAY udelay(2)
2491 CONFIG_SOFT_I2C_GPIO_SCL / CONFIG_SOFT_I2C_GPIO_SDA
2493 If your arch supports the generic GPIO framework (asm/gpio.h),
2494 then you may alternatively define the two GPIOs that are to be
2495 used as SCL / SDA. Any of the previous I2C_xxx macros will
2496 have GPIO-based defaults assigned to them as appropriate.
2498 You should define these to the GPIO value as given directly to
2499 the generic GPIO functions.
2501 CONFIG_SYS_I2C_INIT_BOARD
2503 When a board is reset during an i2c bus transfer
2504 chips might think that the current transfer is still
2505 in progress. On some boards it is possible to access
2506 the i2c SCLK line directly, either by using the
2507 processor pin as a GPIO or by having a second pin
2508 connected to the bus. If this option is defined a
2509 custom i2c_init_board() routine in boards/xxx/board.c
2510 is run early in the boot sequence.
2512 CONFIG_SYS_I2C_BOARD_LATE_INIT
2514 An alternative to CONFIG_SYS_I2C_INIT_BOARD. If this option is
2515 defined a custom i2c_board_late_init() routine in
2516 boards/xxx/board.c is run AFTER the operations in i2c_init()
2517 is completed. This callpoint can be used to unreset i2c bus
2518 using CPU i2c controller register accesses for CPUs whose i2c
2519 controller provide such a method. It is called at the end of
2520 i2c_init() to allow i2c_init operations to setup the i2c bus
2521 controller on the CPU (e.g. setting bus speed & slave address).
2523 CONFIG_I2CFAST (PPC405GP|PPC405EP only)
2525 This option enables configuration of bi_iic_fast[] flags
2526 in u-boot bd_info structure based on u-boot environment
2527 variable "i2cfast". (see also i2cfast)
2529 CONFIG_I2C_MULTI_BUS
2531 This option allows the use of multiple I2C buses, each of which
2532 must have a controller. At any point in time, only one bus is
2533 active. To switch to a different bus, use the 'i2c dev' command.
2534 Note that bus numbering is zero-based.
2536 CONFIG_SYS_I2C_NOPROBES
2538 This option specifies a list of I2C devices that will be skipped
2539 when the 'i2c probe' command is issued. If CONFIG_I2C_MULTI_BUS
2540 is set, specify a list of bus-device pairs. Otherwise, specify
2541 a 1D array of device addresses
2544 #undef CONFIG_I2C_MULTI_BUS
2545 #define CONFIG_SYS_I2C_NOPROBES {0x50,0x68}
2547 will skip addresses 0x50 and 0x68 on a board with one I2C bus
2549 #define CONFIG_I2C_MULTI_BUS
2550 #define CONFIG_SYS_I2C_NOPROBES {{0,0x50},{0,0x68},{1,0x54}}
2552 will skip addresses 0x50 and 0x68 on bus 0 and address 0x54 on bus 1
2554 CONFIG_SYS_SPD_BUS_NUM
2556 If defined, then this indicates the I2C bus number for DDR SPD.
2557 If not defined, then U-Boot assumes that SPD is on I2C bus 0.
2559 CONFIG_SYS_RTC_BUS_NUM
2561 If defined, then this indicates the I2C bus number for the RTC.
2562 If not defined, then U-Boot assumes that RTC is on I2C bus 0.
2564 CONFIG_SYS_DTT_BUS_NUM
2566 If defined, then this indicates the I2C bus number for the DTT.
2567 If not defined, then U-Boot assumes that DTT is on I2C bus 0.
2569 CONFIG_SYS_I2C_DTT_ADDR:
2571 If defined, specifies the I2C address of the DTT device.
2572 If not defined, then U-Boot uses predefined value for
2573 specified DTT device.
2575 CONFIG_SOFT_I2C_READ_REPEATED_START
2577 defining this will force the i2c_read() function in
2578 the soft_i2c driver to perform an I2C repeated start
2579 between writing the address pointer and reading the
2580 data. If this define is omitted the default behaviour
2581 of doing a stop-start sequence will be used. Most I2C
2582 devices can use either method, but some require one or
2585 - SPI Support: CONFIG_SPI
2587 Enables SPI driver (so far only tested with
2588 SPI EEPROM, also an instance works with Crystal A/D and
2589 D/As on the SACSng board)
2593 Enables the driver for SPI controller on SuperH. Currently
2594 only SH7757 is supported.
2598 Enables a software (bit-bang) SPI driver rather than
2599 using hardware support. This is a general purpose
2600 driver that only requires three general I/O port pins
2601 (two outputs, one input) to function. If this is
2602 defined, the board configuration must define several
2603 SPI configuration items (port pins to use, etc). For
2604 an example, see include/configs/sacsng.h.
2608 Enables a hardware SPI driver for general-purpose reads
2609 and writes. As with CONFIG_SOFT_SPI, the board configuration
2610 must define a list of chip-select function pointers.
2611 Currently supported on some MPC8xxx processors. For an
2612 example, see include/configs/mpc8349emds.h.
2616 Enables the driver for the SPI controllers on i.MX and MXC
2617 SoCs. Currently i.MX31/35/51 are supported.
2619 CONFIG_SYS_SPI_MXC_WAIT
2620 Timeout for waiting until spi transfer completed.
2621 default: (CONFIG_SYS_HZ/100) /* 10 ms */
2623 - FPGA Support: CONFIG_FPGA
2625 Enables FPGA subsystem.
2627 CONFIG_FPGA_<vendor>
2629 Enables support for specific chip vendors.
2632 CONFIG_FPGA_<family>
2634 Enables support for FPGA family.
2635 (SPARTAN2, SPARTAN3, VIRTEX2, CYCLONE2, ACEX1K, ACEX)
2639 Specify the number of FPGA devices to support.
2641 CONFIG_CMD_FPGA_LOADMK
2643 Enable support for fpga loadmk command
2645 CONFIG_CMD_FPGA_LOADP
2647 Enable support for fpga loadp command - load partial bitstream
2649 CONFIG_CMD_FPGA_LOADBP
2651 Enable support for fpga loadbp command - load partial bitstream
2654 CONFIG_SYS_FPGA_PROG_FEEDBACK
2656 Enable printing of hash marks during FPGA configuration.
2658 CONFIG_SYS_FPGA_CHECK_BUSY
2660 Enable checks on FPGA configuration interface busy
2661 status by the configuration function. This option
2662 will require a board or device specific function to
2667 If defined, a function that provides delays in the FPGA
2668 configuration driver.
2670 CONFIG_SYS_FPGA_CHECK_CTRLC
2671 Allow Control-C to interrupt FPGA configuration
2673 CONFIG_SYS_FPGA_CHECK_ERROR
2675 Check for configuration errors during FPGA bitfile
2676 loading. For example, abort during Virtex II
2677 configuration if the INIT_B line goes low (which
2678 indicated a CRC error).
2680 CONFIG_SYS_FPGA_WAIT_INIT
2682 Maximum time to wait for the INIT_B line to de-assert
2683 after PROB_B has been de-asserted during a Virtex II
2684 FPGA configuration sequence. The default time is 500
2687 CONFIG_SYS_FPGA_WAIT_BUSY
2689 Maximum time to wait for BUSY to de-assert during
2690 Virtex II FPGA configuration. The default is 5 ms.
2692 CONFIG_SYS_FPGA_WAIT_CONFIG
2694 Time to wait after FPGA configuration. The default is
2697 - Configuration Management:
2700 Some SoCs need special image types (e.g. U-Boot binary
2701 with a special header) as build targets. By defining
2702 CONFIG_BUILD_TARGET in the SoC / board header, this
2703 special image will be automatically built upon calling
2708 If defined, this string will be added to the U-Boot
2709 version information (U_BOOT_VERSION)
2711 - Vendor Parameter Protection:
2713 U-Boot considers the values of the environment
2714 variables "serial#" (Board Serial Number) and
2715 "ethaddr" (Ethernet Address) to be parameters that
2716 are set once by the board vendor / manufacturer, and
2717 protects these variables from casual modification by
2718 the user. Once set, these variables are read-only,
2719 and write or delete attempts are rejected. You can
2720 change this behaviour:
2722 If CONFIG_ENV_OVERWRITE is #defined in your config
2723 file, the write protection for vendor parameters is
2724 completely disabled. Anybody can change or delete
2727 Alternatively, if you define _both_ an ethaddr in the
2728 default env _and_ CONFIG_OVERWRITE_ETHADDR_ONCE, a default
2729 Ethernet address is installed in the environment,
2730 which can be changed exactly ONCE by the user. [The
2731 serial# is unaffected by this, i. e. it remains
2734 The same can be accomplished in a more flexible way
2735 for any variable by configuring the type of access
2736 to allow for those variables in the ".flags" variable
2737 or define CONFIG_ENV_FLAGS_LIST_STATIC.
2742 Define this variable to enable the reservation of
2743 "protected RAM", i. e. RAM which is not overwritten
2744 by U-Boot. Define CONFIG_PRAM to hold the number of
2745 kB you want to reserve for pRAM. You can overwrite
2746 this default value by defining an environment
2747 variable "pram" to the number of kB you want to
2748 reserve. Note that the board info structure will
2749 still show the full amount of RAM. If pRAM is
2750 reserved, a new environment variable "mem" will
2751 automatically be defined to hold the amount of
2752 remaining RAM in a form that can be passed as boot
2753 argument to Linux, for instance like that:
2755 setenv bootargs ... mem=\${mem}
2758 This way you can tell Linux not to use this memory,
2759 either, which results in a memory region that will
2760 not be affected by reboots.
2762 *WARNING* If your board configuration uses automatic
2763 detection of the RAM size, you must make sure that
2764 this memory test is non-destructive. So far, the
2765 following board configurations are known to be
2768 IVMS8, IVML24, SPD8xx, TQM8xxL,
2769 HERMES, IP860, RPXlite, LWMON,
2772 - Access to physical memory region (> 4GB)
2773 Some basic support is provided for operations on memory not
2774 normally accessible to U-Boot - e.g. some architectures
2775 support access to more than 4GB of memory on 32-bit
2776 machines using physical address extension or similar.
2777 Define CONFIG_PHYSMEM to access this basic support, which
2778 currently only supports clearing the memory.
2783 Define this variable to stop the system in case of a
2784 fatal error, so that you have to reset it manually.
2785 This is probably NOT a good idea for an embedded
2786 system where you want the system to reboot
2787 automatically as fast as possible, but it may be
2788 useful during development since you can try to debug
2789 the conditions that lead to the situation.
2791 CONFIG_NET_RETRY_COUNT
2793 This variable defines the number of retries for
2794 network operations like ARP, RARP, TFTP, or BOOTP
2795 before giving up the operation. If not defined, a
2796 default value of 5 is used.
2800 Timeout waiting for an ARP reply in milliseconds.
2804 Timeout in milliseconds used in NFS protocol.
2805 If you encounter "ERROR: Cannot umount" in nfs command,
2806 try longer timeout such as
2807 #define CONFIG_NFS_TIMEOUT 10000UL
2809 - Command Interpreter:
2810 CONFIG_AUTO_COMPLETE
2812 Enable auto completion of commands using TAB.
2814 CONFIG_SYS_PROMPT_HUSH_PS2
2816 This defines the secondary prompt string, which is
2817 printed when the command interpreter needs more input
2818 to complete a command. Usually "> ".
2822 In the current implementation, the local variables
2823 space and global environment variables space are
2824 separated. Local variables are those you define by
2825 simply typing `name=value'. To access a local
2826 variable later on, you have write `$name' or
2827 `${name}'; to execute the contents of a variable
2828 directly type `$name' at the command prompt.
2830 Global environment variables are those you use
2831 setenv/printenv to work with. To run a command stored
2832 in such a variable, you need to use the run command,
2833 and you must not use the '$' sign to access them.
2835 To store commands and special characters in a
2836 variable, please use double quotation marks
2837 surrounding the whole text of the variable, instead
2838 of the backslashes before semicolons and special
2841 - Command Line Editing and History:
2842 CONFIG_CMDLINE_EDITING
2844 Enable editing and History functions for interactive
2845 command line input operations
2847 - Command Line PS1/PS2 support:
2848 CONFIG_CMDLINE_PS_SUPPORT
2850 Enable support for changing the command prompt string
2851 at run-time. Only static string is supported so far.
2852 The string is obtained from environment variables PS1
2855 - Default Environment:
2856 CONFIG_EXTRA_ENV_SETTINGS
2858 Define this to contain any number of null terminated
2859 strings (variable = value pairs) that will be part of
2860 the default environment compiled into the boot image.
2862 For example, place something like this in your
2863 board's config file:
2865 #define CONFIG_EXTRA_ENV_SETTINGS \
2869 Warning: This method is based on knowledge about the
2870 internal format how the environment is stored by the
2871 U-Boot code. This is NOT an official, exported
2872 interface! Although it is unlikely that this format
2873 will change soon, there is no guarantee either.
2874 You better know what you are doing here.
2876 Note: overly (ab)use of the default environment is
2877 discouraged. Make sure to check other ways to preset
2878 the environment like the "source" command or the
2881 CONFIG_ENV_VARS_UBOOT_CONFIG
2883 Define this in order to add variables describing the
2884 U-Boot build configuration to the default environment.
2885 These will be named arch, cpu, board, vendor, and soc.
2887 Enabling this option will cause the following to be defined:
2895 CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
2897 Define this in order to add variables describing certain
2898 run-time determined information about the hardware to the
2899 environment. These will be named board_name, board_rev.
2901 CONFIG_DELAY_ENVIRONMENT
2903 Normally the environment is loaded when the board is
2904 initialised so that it is available to U-Boot. This inhibits
2905 that so that the environment is not available until
2906 explicitly loaded later by U-Boot code. With CONFIG_OF_CONTROL
2907 this is instead controlled by the value of
2908 /config/load-environment.
2910 - Parallel Flash support:
2913 Traditionally U-Boot was run on systems with parallel NOR
2914 flash. This option is used to disable support for parallel NOR
2915 flash. This option should be defined if the board does not have
2918 If this option is not defined one of the generic flash drivers
2919 (e.g. CONFIG_FLASH_CFI_DRIVER or CONFIG_ST_SMI) must be
2920 selected or the board must provide an implementation of the
2921 flash API (see include/flash.h).
2923 - DataFlash Support:
2924 CONFIG_HAS_DATAFLASH
2926 Defining this option enables DataFlash features and
2927 allows to read/write in Dataflash via the standard
2930 - Serial Flash support
2933 Defining this option enables SPI flash commands
2934 'sf probe/read/write/erase/update'.
2936 Usage requires an initial 'probe' to define the serial
2937 flash parameters, followed by read/write/erase/update
2940 The following defaults may be provided by the platform
2941 to handle the common case when only a single serial
2942 flash is present on the system.
2944 CONFIG_SF_DEFAULT_BUS Bus identifier
2945 CONFIG_SF_DEFAULT_CS Chip-select
2946 CONFIG_SF_DEFAULT_MODE (see include/spi.h)
2947 CONFIG_SF_DEFAULT_SPEED in Hz
2951 Define this option to include a destructive SPI flash
2954 CONFIG_SF_DUAL_FLASH Dual flash memories
2956 Define this option to use dual flash support where two flash
2957 memories can be connected with a given cs line.
2958 Currently Xilinx Zynq qspi supports these type of connections.
2960 - SystemACE Support:
2963 Adding this option adds support for Xilinx SystemACE
2964 chips attached via some sort of local bus. The address
2965 of the chip must also be defined in the
2966 CONFIG_SYS_SYSTEMACE_BASE macro. For example:
2968 #define CONFIG_SYSTEMACE
2969 #define CONFIG_SYS_SYSTEMACE_BASE 0xf0000000
2971 When SystemACE support is added, the "ace" device type
2972 becomes available to the fat commands, i.e. fatls.
2974 - TFTP Fixed UDP Port:
2977 If this is defined, the environment variable tftpsrcp
2978 is used to supply the TFTP UDP source port value.
2979 If tftpsrcp isn't defined, the normal pseudo-random port
2980 number generator is used.
2982 Also, the environment variable tftpdstp is used to supply
2983 the TFTP UDP destination port value. If tftpdstp isn't
2984 defined, the normal port 69 is used.
2986 The purpose for tftpsrcp is to allow a TFTP server to
2987 blindly start the TFTP transfer using the pre-configured
2988 target IP address and UDP port. This has the effect of
2989 "punching through" the (Windows XP) firewall, allowing
2990 the remainder of the TFTP transfer to proceed normally.
2991 A better solution is to properly configure the firewall,
2992 but sometimes that is not allowed.
2997 This enables a generic 'hash' command which can produce
2998 hashes / digests from a few algorithms (e.g. SHA1, SHA256).
3002 Enable the hash verify command (hash -v). This adds to code
3005 CONFIG_SHA1 - This option enables support of hashing using SHA1
3006 algorithm. The hash is calculated in software.
3007 CONFIG_SHA256 - This option enables support of hashing using
3008 SHA256 algorithm. The hash is calculated in software.
3009 CONFIG_SHA_HW_ACCEL - This option enables hardware acceleration
3010 for SHA1/SHA256 hashing.
3011 This affects the 'hash' command and also the
3012 hash_lookup_algo() function.
3013 CONFIG_SHA_PROG_HW_ACCEL - This option enables
3014 hardware-acceleration for SHA1/SHA256 progressive hashing.
3015 Data can be streamed in a block at a time and the hashing
3016 is performed in hardware.
3018 Note: There is also a sha1sum command, which should perhaps
3019 be deprecated in favour of 'hash sha1'.
3021 - Freescale i.MX specific commands:
3022 CONFIG_CMD_HDMIDETECT
3023 This enables 'hdmidet' command which returns true if an
3024 HDMI monitor is detected. This command is i.MX 6 specific.
3027 This enables the 'bmode' (bootmode) command for forcing
3028 a boot from specific media.
3030 This is useful for forcing the ROM's usb downloader to
3031 activate upon a watchdog reset which is nice when iterating
3032 on U-Boot. Using the reset button or running bmode normal
3033 will set it back to normal. This command currently
3034 supports i.MX53 and i.MX6.
3036 - bootcount support:
3037 CONFIG_BOOTCOUNT_LIMIT
3039 This enables the bootcounter support, see:
3040 http://www.denx.de/wiki/DULG/UBootBootCountLimit
3043 enable special bootcounter support on at91sam9xe based boards.
3045 enable special bootcounter support on blackfin based boards.
3047 enable special bootcounter support on da850 based boards.
3048 CONFIG_BOOTCOUNT_RAM
3049 enable support for the bootcounter in RAM
3050 CONFIG_BOOTCOUNT_I2C
3051 enable support for the bootcounter on an i2c (like RTC) device.
3052 CONFIG_SYS_I2C_RTC_ADDR = i2c chip address
3053 CONFIG_SYS_BOOTCOUNT_ADDR = i2c addr which is used for
3055 CONFIG_BOOTCOUNT_ALEN = address len
3057 - Show boot progress:
3058 CONFIG_SHOW_BOOT_PROGRESS
3060 Defining this option allows to add some board-
3061 specific code (calling a user-provided function
3062 "show_boot_progress(int)") that enables you to show
3063 the system's boot progress on some display (for
3064 example, some LED's) on your board. At the moment,
3065 the following checkpoints are implemented:
3068 Legacy uImage format:
3071 1 common/cmd_bootm.c before attempting to boot an image
3072 -1 common/cmd_bootm.c Image header has bad magic number
3073 2 common/cmd_bootm.c Image header has correct magic number
3074 -2 common/cmd_bootm.c Image header has bad checksum
3075 3 common/cmd_bootm.c Image header has correct checksum
3076 -3 common/cmd_bootm.c Image data has bad checksum
3077 4 common/cmd_bootm.c Image data has correct checksum
3078 -4 common/cmd_bootm.c Image is for unsupported architecture
3079 5 common/cmd_bootm.c Architecture check OK
3080 -5 common/cmd_bootm.c Wrong Image Type (not kernel, multi)
3081 6 common/cmd_bootm.c Image Type check OK
3082 -6 common/cmd_bootm.c gunzip uncompression error
3083 -7 common/cmd_bootm.c Unimplemented compression type
3084 7 common/cmd_bootm.c Uncompression OK
3085 8 common/cmd_bootm.c No uncompress/copy overwrite error
3086 -9 common/cmd_bootm.c Unsupported OS (not Linux, BSD, VxWorks, QNX)
3088 9 common/image.c Start initial ramdisk verification
3089 -10 common/image.c Ramdisk header has bad magic number
3090 -11 common/image.c Ramdisk header has bad checksum
3091 10 common/image.c Ramdisk header is OK
3092 -12 common/image.c Ramdisk data has bad checksum
3093 11 common/image.c Ramdisk data has correct checksum
3094 12 common/image.c Ramdisk verification complete, start loading
3095 -13 common/image.c Wrong Image Type (not PPC Linux ramdisk)
3096 13 common/image.c Start multifile image verification
3097 14 common/image.c No initial ramdisk, no multifile, continue.
3099 15 arch/<arch>/lib/bootm.c All preparation done, transferring control to OS
3101 -30 arch/powerpc/lib/board.c Fatal error, hang the system
3102 -31 post/post.c POST test failed, detected by post_output_backlog()
3103 -32 post/post.c POST test failed, detected by post_run_single()
3105 34 common/cmd_doc.c before loading a Image from a DOC device
3106 -35 common/cmd_doc.c Bad usage of "doc" command
3107 35 common/cmd_doc.c correct usage of "doc" command
3108 -36 common/cmd_doc.c No boot device
3109 36 common/cmd_doc.c correct boot device
3110 -37 common/cmd_doc.c Unknown Chip ID on boot device
3111 37 common/cmd_doc.c correct chip ID found, device available
3112 -38 common/cmd_doc.c Read Error on boot device
3113 38 common/cmd_doc.c reading Image header from DOC device OK
3114 -39 common/cmd_doc.c Image header has bad magic number
3115 39 common/cmd_doc.c Image header has correct magic number
3116 -40 common/cmd_doc.c Error reading Image from DOC device
3117 40 common/cmd_doc.c Image header has correct magic number
3118 41 common/cmd_ide.c before loading a Image from a IDE device
3119 -42 common/cmd_ide.c Bad usage of "ide" command
3120 42 common/cmd_ide.c correct usage of "ide" command
3121 -43 common/cmd_ide.c No boot device
3122 43 common/cmd_ide.c boot device found
3123 -44 common/cmd_ide.c Device not available
3124 44 common/cmd_ide.c Device available
3125 -45 common/cmd_ide.c wrong partition selected
3126 45 common/cmd_ide.c partition selected
3127 -46 common/cmd_ide.c Unknown partition table
3128 46 common/cmd_ide.c valid partition table found
3129 -47 common/cmd_ide.c Invalid partition type
3130 47 common/cmd_ide.c correct partition type
3131 -48 common/cmd_ide.c Error reading Image Header on boot device
3132 48 common/cmd_ide.c reading Image Header from IDE device OK
3133 -49 common/cmd_ide.c Image header has bad magic number
3134 49 common/cmd_ide.c Image header has correct magic number
3135 -50 common/cmd_ide.c Image header has bad checksum
3136 50 common/cmd_ide.c Image header has correct checksum
3137 -51 common/cmd_ide.c Error reading Image from IDE device
3138 51 common/cmd_ide.c reading Image from IDE device OK
3139 52 common/cmd_nand.c before loading a Image from a NAND device
3140 -53 common/cmd_nand.c Bad usage of "nand" command
3141 53 common/cmd_nand.c correct usage of "nand" command
3142 -54 common/cmd_nand.c No boot device
3143 54 common/cmd_nand.c boot device found
3144 -55 common/cmd_nand.c Unknown Chip ID on boot device
3145 55 common/cmd_nand.c correct chip ID found, device available
3146 -56 common/cmd_nand.c Error reading Image Header on boot device
3147 56 common/cmd_nand.c reading Image Header from NAND device OK
3148 -57 common/cmd_nand.c Image header has bad magic number
3149 57 common/cmd_nand.c Image header has correct magic number
3150 -58 common/cmd_nand.c Error reading Image from NAND device
3151 58 common/cmd_nand.c reading Image from NAND device OK
3153 -60 common/env_common.c Environment has a bad CRC, using default
3155 64 net/eth.c starting with Ethernet configuration.
3156 -64 net/eth.c no Ethernet found.
3157 65 net/eth.c Ethernet found.
3159 -80 common/cmd_net.c usage wrong
3160 80 common/cmd_net.c before calling net_loop()
3161 -81 common/cmd_net.c some error in net_loop() occurred
3162 81 common/cmd_net.c net_loop() back without error
3163 -82 common/cmd_net.c size == 0 (File with size 0 loaded)
3164 82 common/cmd_net.c trying automatic boot
3165 83 common/cmd_net.c running "source" command
3166 -83 common/cmd_net.c some error in automatic boot or "source" command
3167 84 common/cmd_net.c end without errors
3172 100 common/cmd_bootm.c Kernel FIT Image has correct format
3173 -100 common/cmd_bootm.c Kernel FIT Image has incorrect format
3174 101 common/cmd_bootm.c No Kernel subimage unit name, using configuration
3175 -101 common/cmd_bootm.c Can't get configuration for kernel subimage
3176 102 common/cmd_bootm.c Kernel unit name specified
3177 -103 common/cmd_bootm.c Can't get kernel subimage node offset
3178 103 common/cmd_bootm.c Found configuration node
3179 104 common/cmd_bootm.c Got kernel subimage node offset
3180 -104 common/cmd_bootm.c Kernel subimage hash verification failed
3181 105 common/cmd_bootm.c Kernel subimage hash verification OK
3182 -105 common/cmd_bootm.c Kernel subimage is for unsupported architecture
3183 106 common/cmd_bootm.c Architecture check OK
3184 -106 common/cmd_bootm.c Kernel subimage has wrong type
3185 107 common/cmd_bootm.c Kernel subimage type OK
3186 -107 common/cmd_bootm.c Can't get kernel subimage data/size
3187 108 common/cmd_bootm.c Got kernel subimage data/size
3188 -108 common/cmd_bootm.c Wrong image type (not legacy, FIT)
3189 -109 common/cmd_bootm.c Can't get kernel subimage type
3190 -110 common/cmd_bootm.c Can't get kernel subimage comp
3191 -111 common/cmd_bootm.c Can't get kernel subimage os
3192 -112 common/cmd_bootm.c Can't get kernel subimage load address
3193 -113 common/cmd_bootm.c Image uncompress/copy overwrite error
3195 120 common/image.c Start initial ramdisk verification
3196 -120 common/image.c Ramdisk FIT image has incorrect format
3197 121 common/image.c Ramdisk FIT image has correct format
3198 122 common/image.c No ramdisk subimage unit name, using configuration
3199 -122 common/image.c Can't get configuration for ramdisk subimage
3200 123 common/image.c Ramdisk unit name specified
3201 -124 common/image.c Can't get ramdisk subimage node offset
3202 125 common/image.c Got ramdisk subimage node offset
3203 -125 common/image.c Ramdisk subimage hash verification failed
3204 126 common/image.c Ramdisk subimage hash verification OK
3205 -126 common/image.c Ramdisk subimage for unsupported architecture
3206 127 common/image.c Architecture check OK
3207 -127 common/image.c Can't get ramdisk subimage data/size
3208 128 common/image.c Got ramdisk subimage data/size
3209 129 common/image.c Can't get ramdisk load address
3210 -129 common/image.c Got ramdisk load address
3212 -130 common/cmd_doc.c Incorrect FIT image format
3213 131 common/cmd_doc.c FIT image format OK
3215 -140 common/cmd_ide.c Incorrect FIT image format
3216 141 common/cmd_ide.c FIT image format OK
3218 -150 common/cmd_nand.c Incorrect FIT image format
3219 151 common/cmd_nand.c FIT image format OK
3221 - legacy image format:
3222 CONFIG_IMAGE_FORMAT_LEGACY
3223 enables the legacy image format support in U-Boot.
3226 enabled if CONFIG_FIT_SIGNATURE is not defined.
3228 CONFIG_DISABLE_IMAGE_LEGACY
3229 disable the legacy image format
3231 This define is introduced, as the legacy image format is
3232 enabled per default for backward compatibility.
3234 - FIT image support:
3235 CONFIG_FIT_DISABLE_SHA256
3236 Supporting SHA256 hashes has quite an impact on binary size.
3237 For constrained systems sha256 hash support can be disabled
3240 TODO(sjg@chromium.org): Adjust this option to be positive,
3241 and move it to Kconfig
3243 - Standalone program support:
3244 CONFIG_STANDALONE_LOAD_ADDR
3246 This option defines a board specific value for the
3247 address where standalone program gets loaded, thus
3248 overwriting the architecture dependent default
3251 - Frame Buffer Address:
3254 Define CONFIG_FB_ADDR if you want to use specific
3255 address for frame buffer. This is typically the case
3256 when using a graphics controller has separate video
3257 memory. U-Boot will then place the frame buffer at
3258 the given address instead of dynamically reserving it
3259 in system RAM by calling lcd_setmem(), which grabs
3260 the memory for the frame buffer depending on the
3261 configured panel size.
3263 Please see board_init_f function.
3265 - Automatic software updates via TFTP server
3267 CONFIG_UPDATE_TFTP_CNT_MAX
3268 CONFIG_UPDATE_TFTP_MSEC_MAX
3270 These options enable and control the auto-update feature;
3271 for a more detailed description refer to doc/README.update.
3273 - MTD Support (mtdparts command, UBI support)
3276 Adds the MTD device infrastructure from the Linux kernel.
3277 Needed for mtdparts command support.
3279 CONFIG_MTD_PARTITIONS
3281 Adds the MTD partitioning infrastructure from the Linux
3282 kernel. Needed for UBI support.
3287 Adds commands for interacting with MTD partitions formatted
3288 with the UBI flash translation layer
3290 Requires also defining CONFIG_RBTREE
3292 CONFIG_UBI_SILENCE_MSG
3294 Make the verbose messages from UBI stop printing. This leaves
3295 warnings and errors enabled.
3298 CONFIG_MTD_UBI_WL_THRESHOLD
3299 This parameter defines the maximum difference between the highest
3300 erase counter value and the lowest erase counter value of eraseblocks
3301 of UBI devices. When this threshold is exceeded, UBI starts performing
3302 wear leveling by means of moving data from eraseblock with low erase
3303 counter to eraseblocks with high erase counter.
3305 The default value should be OK for SLC NAND flashes, NOR flashes and
3306 other flashes which have eraseblock life-cycle 100000 or more.
3307 However, in case of MLC NAND flashes which typically have eraseblock
3308 life-cycle less than 10000, the threshold should be lessened (e.g.,
3309 to 128 or 256, although it does not have to be power of 2).
3313 CONFIG_MTD_UBI_BEB_LIMIT
3314 This option specifies the maximum bad physical eraseblocks UBI
3315 expects on the MTD device (per 1024 eraseblocks). If the
3316 underlying flash does not admit of bad eraseblocks (e.g. NOR
3317 flash), this value is ignored.
3319 NAND datasheets often specify the minimum and maximum NVM
3320 (Number of Valid Blocks) for the flashes' endurance lifetime.
3321 The maximum expected bad eraseblocks per 1024 eraseblocks
3322 then can be calculated as "1024 * (1 - MinNVB / MaxNVB)",
3323 which gives 20 for most NANDs (MaxNVB is basically the total
3324 count of eraseblocks on the chip).
3326 To put it differently, if this value is 20, UBI will try to
3327 reserve about 1.9% of physical eraseblocks for bad blocks
3328 handling. And that will be 1.9% of eraseblocks on the entire
3329 NAND chip, not just the MTD partition UBI attaches. This means
3330 that if you have, say, a NAND flash chip admits maximum 40 bad
3331 eraseblocks, and it is split on two MTD partitions of the same
3332 size, UBI will reserve 40 eraseblocks when attaching a
3337 CONFIG_MTD_UBI_FASTMAP
3338 Fastmap is a mechanism which allows attaching an UBI device
3339 in nearly constant time. Instead of scanning the whole MTD device it
3340 only has to locate a checkpoint (called fastmap) on the device.
3341 The on-flash fastmap contains all information needed to attach
3342 the device. Using fastmap makes only sense on large devices where
3343 attaching by scanning takes long. UBI will not automatically install
3344 a fastmap on old images, but you can set the UBI parameter
3345 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT to 1 if you want so. Please note
3346 that fastmap-enabled images are still usable with UBI implementations
3347 without fastmap support. On typical flash devices the whole fastmap
3348 fits into one PEB. UBI will reserve PEBs to hold two fastmaps.
3350 CONFIG_MTD_UBI_FASTMAP_AUTOCONVERT
3351 Set this parameter to enable fastmap automatically on images
3355 CONFIG_MTD_UBI_FM_DEBUG
3356 Enable UBI fastmap debug
3362 Adds commands for interacting with UBI volumes formatted as
3363 UBIFS. UBIFS is read-only in u-boot.
3365 Requires UBI support as well as CONFIG_LZO
3367 CONFIG_UBIFS_SILENCE_MSG
3369 Make the verbose messages from UBIFS stop printing. This leaves
3370 warnings and errors enabled.
3374 Enable building of SPL globally.
3377 LDSCRIPT for linking the SPL binary.
3379 CONFIG_SPL_MAX_FOOTPRINT
3380 Maximum size in memory allocated to the SPL, BSS included.
3381 When defined, the linker checks that the actual memory
3382 used by SPL from _start to __bss_end does not exceed it.
3383 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE
3384 must not be both defined at the same time.
3387 Maximum size of the SPL image (text, data, rodata, and
3388 linker lists sections), BSS excluded.
3389 When defined, the linker checks that the actual size does
3392 CONFIG_SPL_TEXT_BASE
3393 TEXT_BASE for linking the SPL binary.
3395 CONFIG_SPL_RELOC_TEXT_BASE
3396 Address to relocate to. If unspecified, this is equal to
3397 CONFIG_SPL_TEXT_BASE (i.e. no relocation is done).
3399 CONFIG_SPL_BSS_START_ADDR
3400 Link address for the BSS within the SPL binary.
3402 CONFIG_SPL_BSS_MAX_SIZE
3403 Maximum size in memory allocated to the SPL BSS.
3404 When defined, the linker checks that the actual memory used
3405 by SPL from __bss_start to __bss_end does not exceed it.
3406 CONFIG_SPL_MAX_FOOTPRINT and CONFIG_SPL_BSS_MAX_SIZE
3407 must not be both defined at the same time.
3410 Adress of the start of the stack SPL will use
3412 CONFIG_SPL_PANIC_ON_RAW_IMAGE
3413 When defined, SPL will panic() if the image it has
3414 loaded does not have a signature.
3415 Defining this is useful when code which loads images
3416 in SPL cannot guarantee that absolutely all read errors
3418 An example is the LPC32XX MLC NAND driver, which will
3419 consider that a completely unreadable NAND block is bad,
3420 and thus should be skipped silently.
3422 CONFIG_SPL_ABORT_ON_RAW_IMAGE
3423 When defined, SPL will proceed to another boot method
3424 if the image it has loaded does not have a signature.
3426 CONFIG_SPL_RELOC_STACK
3427 Adress of the start of the stack SPL will use after
3428 relocation. If unspecified, this is equal to
3431 CONFIG_SYS_SPL_MALLOC_START
3432 Starting address of the malloc pool used in SPL.
3433 When this option is set the full malloc is used in SPL and
3434 it is set up by spl_init() and before that, the simple malloc()
3435 can be used if CONFIG_SYS_MALLOC_F is defined.
3437 CONFIG_SYS_SPL_MALLOC_SIZE
3438 The size of the malloc pool used in SPL.
3440 CONFIG_SPL_FRAMEWORK
3441 Enable the SPL framework under common/. This framework
3442 supports MMC, NAND and YMODEM loading of U-Boot and NAND
3443 NAND loading of the Linux Kernel.
3446 Enable booting directly to an OS from SPL.
3447 See also: doc/README.falcon
3449 CONFIG_SPL_DISPLAY_PRINT
3450 For ARM, enable an optional function to print more information
3451 about the running system.
3453 CONFIG_SPL_INIT_MINIMAL
3454 Arch init code should be built for a very small image
3456 CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_SECTOR,
3457 CONFIG_SYS_U_BOOT_MAX_SIZE_SECTORS,
3458 Address and partition on the MMC to load U-Boot from
3459 when the MMC is being used in raw mode.
3461 CONFIG_SYS_MMCSD_RAW_MODE_U_BOOT_PARTITION
3462 Partition on the MMC to load U-Boot from when the MMC is being
3465 CONFIG_SYS_MMCSD_RAW_MODE_KERNEL_SECTOR
3466 Sector to load kernel uImage from when MMC is being
3467 used in raw mode (for Falcon mode)
3469 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTOR,
3470 CONFIG_SYS_MMCSD_RAW_MODE_ARGS_SECTORS
3471 Sector and number of sectors to load kernel argument
3472 parameters from when MMC is being used in raw mode
3475 CONFIG_SYS_MMCSD_FS_BOOT_PARTITION
3476 Partition on the MMC to load U-Boot from when the MMC is being
3479 CONFIG_SPL_FS_LOAD_PAYLOAD_NAME
3480 Filename to read to load U-Boot when reading from filesystem
3482 CONFIG_SPL_FS_LOAD_KERNEL_NAME
3483 Filename to read to load kernel uImage when reading
3484 from filesystem (for Falcon mode)
3486 CONFIG_SPL_FS_LOAD_ARGS_NAME
3487 Filename to read to load kernel argument parameters
3488 when reading from filesystem (for Falcon mode)
3490 CONFIG_SPL_MPC83XX_WAIT_FOR_NAND
3491 Set this for NAND SPL on PPC mpc83xx targets, so that
3492 start.S waits for the rest of the SPL to load before
3493 continuing (the hardware starts execution after just
3494 loading the first page rather than the full 4K).
3496 CONFIG_SPL_SKIP_RELOCATE
3497 Avoid SPL relocation
3499 CONFIG_SPL_NAND_BASE
3500 Include nand_base.c in the SPL. Requires
3501 CONFIG_SPL_NAND_DRIVERS.
3503 CONFIG_SPL_NAND_DRIVERS
3504 SPL uses normal NAND drivers, not minimal drivers.
3507 Include standard software ECC in the SPL
3509 CONFIG_SPL_NAND_SIMPLE
3510 Support for NAND boot using simple NAND drivers that
3511 expose the cmd_ctrl() interface.
3514 Support for a lightweight UBI (fastmap) scanner and
3517 CONFIG_SPL_NAND_RAW_ONLY
3518 Support to boot only raw u-boot.bin images. Use this only
3519 if you need to save space.
3521 CONFIG_SPL_COMMON_INIT_DDR
3522 Set for common ddr init with serial presence detect in
3525 CONFIG_SYS_NAND_5_ADDR_CYCLE, CONFIG_SYS_NAND_PAGE_COUNT,
3526 CONFIG_SYS_NAND_PAGE_SIZE, CONFIG_SYS_NAND_OOBSIZE,
3527 CONFIG_SYS_NAND_BLOCK_SIZE, CONFIG_SYS_NAND_BAD_BLOCK_POS,
3528 CONFIG_SYS_NAND_ECCPOS, CONFIG_SYS_NAND_ECCSIZE,
3529 CONFIG_SYS_NAND_ECCBYTES
3530 Defines the size and behavior of the NAND that SPL uses
3533 CONFIG_SPL_NAND_BOOT
3534 Add support NAND boot
3536 CONFIG_SYS_NAND_U_BOOT_OFFS
3537 Location in NAND to read U-Boot from
3539 CONFIG_SYS_NAND_U_BOOT_DST
3540 Location in memory to load U-Boot to
3542 CONFIG_SYS_NAND_U_BOOT_SIZE
3543 Size of image to load
3545 CONFIG_SYS_NAND_U_BOOT_START
3546 Entry point in loaded image to jump to
3548 CONFIG_SYS_NAND_HW_ECC_OOBFIRST
3549 Define this if you need to first read the OOB and then the
3550 data. This is used, for example, on davinci platforms.
3552 CONFIG_SPL_OMAP3_ID_NAND
3553 Support for an OMAP3-specific set of functions to return the
3554 ID and MFR of the first attached NAND chip, if present.
3556 CONFIG_SPL_RAM_DEVICE
3557 Support for running image already present in ram, in SPL binary
3560 Image offset to which the SPL should be padded before appending
3561 the SPL payload. By default, this is defined as
3562 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined.
3563 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL
3564 payload without any padding, or >= CONFIG_SPL_MAX_SIZE.
3567 Final target image containing SPL and payload. Some SPLs
3568 use an arch-specific makefile fragment instead, for
3569 example if more than one image needs to be produced.
3571 CONFIG_FIT_SPL_PRINT
3572 Printing information about a FIT image adds quite a bit of
3573 code to SPL. So this is normally disabled in SPL. Use this
3574 option to re-enable it. This will affect the output of the
3575 bootm command when booting a FIT image.
3579 Enable building of TPL globally.
3582 Image offset to which the TPL should be padded before appending
3583 the TPL payload. By default, this is defined as
3584 CONFIG_SPL_MAX_SIZE, or 0 if CONFIG_SPL_MAX_SIZE is undefined.
3585 CONFIG_SPL_PAD_TO must be either 0, meaning to append the SPL
3586 payload without any padding, or >= CONFIG_SPL_MAX_SIZE.
3588 - Interrupt support (PPC):
3590 There are common interrupt_init() and timer_interrupt()
3591 for all PPC archs. interrupt_init() calls interrupt_init_cpu()
3592 for CPU specific initialization. interrupt_init_cpu()
3593 should set decrementer_count to appropriate value. If
3594 CPU resets decrementer automatically after interrupt
3595 (ppc4xx) it should set decrementer_count to zero.
3596 timer_interrupt() calls timer_interrupt_cpu() for CPU
3597 specific handling. If board has watchdog / status_led
3598 / other_activity_monitor it works automatically from
3599 general timer_interrupt().
3602 Board initialization settings:
3603 ------------------------------
3605 During Initialization u-boot calls a number of board specific functions
3606 to allow the preparation of board specific prerequisites, e.g. pin setup
3607 before drivers are initialized. To enable these callbacks the
3608 following configuration macros have to be defined. Currently this is
3609 architecture specific, so please check arch/your_architecture/lib/board.c
3610 typically in board_init_f() and board_init_r().
3612 - CONFIG_BOARD_EARLY_INIT_F: Call board_early_init_f()
3613 - CONFIG_BOARD_EARLY_INIT_R: Call board_early_init_r()
3614 - CONFIG_BOARD_LATE_INIT: Call board_late_init()
3615 - CONFIG_BOARD_POSTCLK_INIT: Call board_postclk_init()
3617 Configuration Settings:
3618 -----------------------
3620 - CONFIG_SYS_SUPPORT_64BIT_DATA: Defined automatically if compiled as 64-bit.
3621 Optionally it can be defined to support 64-bit memory commands.
3623 - CONFIG_SYS_LONGHELP: Defined when you want long help messages included;
3624 undefine this when you're short of memory.
3626 - CONFIG_SYS_HELP_CMD_WIDTH: Defined when you want to override the default
3627 width of the commands listed in the 'help' command output.
3629 - CONFIG_SYS_PROMPT: This is what U-Boot prints on the console to
3630 prompt for user input.
3632 - CONFIG_SYS_CBSIZE: Buffer size for input from the Console
3634 - CONFIG_SYS_PBSIZE: Buffer size for Console output
3636 - CONFIG_SYS_MAXARGS: max. Number of arguments accepted for monitor commands
3638 - CONFIG_SYS_BARGSIZE: Buffer size for Boot Arguments which are passed to
3639 the application (usually a Linux kernel) when it is
3642 - CONFIG_SYS_BAUDRATE_TABLE:
3643 List of legal baudrate settings for this board.
3645 - CONFIG_SYS_CONSOLE_INFO_QUIET
3646 Suppress display of console information at boot.
3648 - CONFIG_SYS_CONSOLE_IS_IN_ENV
3649 If the board specific function
3650 extern int overwrite_console (void);
3651 returns 1, the stdin, stderr and stdout are switched to the
3652 serial port, else the settings in the environment are used.
3654 - CONFIG_SYS_CONSOLE_OVERWRITE_ROUTINE
3655 Enable the call to overwrite_console().
3657 - CONFIG_SYS_CONSOLE_ENV_OVERWRITE
3658 Enable overwrite of previous console environment settings.
3660 - CONFIG_SYS_MEMTEST_START, CONFIG_SYS_MEMTEST_END:
3661 Begin and End addresses of the area used by the
3664 - CONFIG_SYS_ALT_MEMTEST:
3665 Enable an alternate, more extensive memory test.
3667 - CONFIG_SYS_MEMTEST_SCRATCH:
3668 Scratch address used by the alternate memory test
3669 You only need to set this if address zero isn't writeable
3671 - CONFIG_SYS_MEM_RESERVE_SECURE
3672 Only implemented for ARMv8 for now.
3673 If defined, the size of CONFIG_SYS_MEM_RESERVE_SECURE memory
3674 is substracted from total RAM and won't be reported to OS.
3675 This memory can be used as secure memory. A variable
3676 gd->arch.secure_ram is used to track the location. In systems
3677 the RAM base is not zero, or RAM is divided into banks,
3678 this variable needs to be recalcuated to get the address.
3680 - CONFIG_SYS_MEM_TOP_HIDE:
3681 If CONFIG_SYS_MEM_TOP_HIDE is defined in the board config header,
3682 this specified memory area will get subtracted from the top
3683 (end) of RAM and won't get "touched" at all by U-Boot. By
3684 fixing up gd->ram_size the Linux kernel should gets passed
3685 the now "corrected" memory size and won't touch it either.
3686 This should work for arch/ppc and arch/powerpc. Only Linux
3687 board ports in arch/powerpc with bootwrapper support that
3688 recalculate the memory size from the SDRAM controller setup
3689 will have to get fixed in Linux additionally.
3691 This option can be used as a workaround for the 440EPx/GRx
3692 CHIP 11 errata where the last 256 bytes in SDRAM shouldn't
3695 WARNING: Please make sure that this value is a multiple of
3696 the Linux page size (normally 4k). If this is not the case,
3697 then the end address of the Linux memory will be located at a
3698 non page size aligned address and this could cause major
3701 - CONFIG_SYS_LOADS_BAUD_CHANGE:
3702 Enable temporary baudrate change while serial download
3704 - CONFIG_SYS_SDRAM_BASE:
3705 Physical start address of SDRAM. _Must_ be 0 here.
3707 - CONFIG_SYS_FLASH_BASE:
3708 Physical start address of Flash memory.
3710 - CONFIG_SYS_MONITOR_BASE:
3711 Physical start address of boot monitor code (set by
3712 make config files to be same as the text base address
3713 (CONFIG_SYS_TEXT_BASE) used when linking) - same as
3714 CONFIG_SYS_FLASH_BASE when booting from flash.
3716 - CONFIG_SYS_MONITOR_LEN:
3717 Size of memory reserved for monitor code, used to
3718 determine _at_compile_time_ (!) if the environment is
3719 embedded within the U-Boot image, or in a separate
3722 - CONFIG_SYS_MALLOC_LEN:
3723 Size of DRAM reserved for malloc() use.
3725 - CONFIG_SYS_MALLOC_F_LEN
3726 Size of the malloc() pool for use before relocation. If
3727 this is defined, then a very simple malloc() implementation
3728 will become available before relocation. The address is just
3729 below the global data, and the stack is moved down to make
3732 This feature allocates regions with increasing addresses
3733 within the region. calloc() is supported, but realloc()
3734 is not available. free() is supported but does nothing.
3735 The memory will be freed (or in fact just forgotten) when
3736 U-Boot relocates itself.
3738 - CONFIG_SYS_MALLOC_SIMPLE
3739 Provides a simple and small malloc() and calloc() for those
3740 boards which do not use the full malloc in SPL (which is
3741 enabled with CONFIG_SYS_SPL_MALLOC_START).
3743 - CONFIG_SYS_NONCACHED_MEMORY:
3744 Size of non-cached memory area. This area of memory will be
3745 typically located right below the malloc() area and mapped
3746 uncached in the MMU. This is useful for drivers that would
3747 otherwise require a lot of explicit cache maintenance. For
3748 some drivers it's also impossible to properly maintain the
3749 cache. For example if the regions that need to be flushed
3750 are not a multiple of the cache-line size, *and* padding
3751 cannot be allocated between the regions to align them (i.e.
3752 if the HW requires a contiguous array of regions, and the
3753 size of each region is not cache-aligned), then a flush of
3754 one region may result in overwriting data that hardware has
3755 written to another region in the same cache-line. This can
3756 happen for example in network drivers where descriptors for
3757 buffers are typically smaller than the CPU cache-line (e.g.
3758 16 bytes vs. 32 or 64 bytes).
3760 Non-cached memory is only supported on 32-bit ARM at present.
3762 - CONFIG_SYS_BOOTM_LEN:
3763 Normally compressed uImages are limited to an
3764 uncompressed size of 8 MBytes. If this is not enough,
3765 you can define CONFIG_SYS_BOOTM_LEN in your board config file
3766 to adjust this setting to your needs.
3768 - CONFIG_SYS_BOOTMAPSZ:
3769 Maximum size of memory mapped by the startup code of
3770 the Linux kernel; all data that must be processed by
3771 the Linux kernel (bd_info, boot arguments, FDT blob if
3772 used) must be put below this limit, unless "bootm_low"
3773 environment variable is defined and non-zero. In such case
3774 all data for the Linux kernel must be between "bootm_low"
3775 and "bootm_low" + CONFIG_SYS_BOOTMAPSZ. The environment
3776 variable "bootm_mapsize" will override the value of
3777 CONFIG_SYS_BOOTMAPSZ. If CONFIG_SYS_BOOTMAPSZ is undefined,
3778 then the value in "bootm_size" will be used instead.
3780 - CONFIG_SYS_BOOT_RAMDISK_HIGH:
3781 Enable initrd_high functionality. If defined then the
3782 initrd_high feature is enabled and the bootm ramdisk subcommand
3785 - CONFIG_SYS_BOOT_GET_CMDLINE:
3786 Enables allocating and saving kernel cmdline in space between
3787 "bootm_low" and "bootm_low" + BOOTMAPSZ.
3789 - CONFIG_SYS_BOOT_GET_KBD:
3790 Enables allocating and saving a kernel copy of the bd_info in
3791 space between "bootm_low" and "bootm_low" + BOOTMAPSZ.
3793 - CONFIG_SYS_MAX_FLASH_BANKS:
3794 Max number of Flash memory banks
3796 - CONFIG_SYS_MAX_FLASH_SECT:
3797 Max number of sectors on a Flash chip
3799 - CONFIG_SYS_FLASH_ERASE_TOUT:
3800 Timeout for Flash erase operations (in ms)
3802 - CONFIG_SYS_FLASH_WRITE_TOUT:
3803 Timeout for Flash write operations (in ms)
3805 - CONFIG_SYS_FLASH_LOCK_TOUT
3806 Timeout for Flash set sector lock bit operation (in ms)
3808 - CONFIG_SYS_FLASH_UNLOCK_TOUT
3809 Timeout for Flash clear lock bits operation (in ms)
3811 - CONFIG_SYS_FLASH_PROTECTION
3812 If defined, hardware flash sectors protection is used
3813 instead of U-Boot software protection.
3815 - CONFIG_SYS_DIRECT_FLASH_TFTP:
3817 Enable TFTP transfers directly to flash memory;
3818 without this option such a download has to be
3819 performed in two steps: (1) download to RAM, and (2)
3820 copy from RAM to flash.
3822 The two-step approach is usually more reliable, since
3823 you can check if the download worked before you erase
3824 the flash, but in some situations (when system RAM is
3825 too limited to allow for a temporary copy of the
3826 downloaded image) this option may be very useful.
3828 - CONFIG_SYS_FLASH_CFI:
3829 Define if the flash driver uses extra elements in the
3830 common flash structure for storing flash geometry.
3832 - CONFIG_FLASH_CFI_DRIVER
3833 This option also enables the building of the cfi_flash driver
3834 in the drivers directory
3836 - CONFIG_FLASH_CFI_MTD
3837 This option enables the building of the cfi_mtd driver
3838 in the drivers directory. The driver exports CFI flash
3841 - CONFIG_SYS_FLASH_USE_BUFFER_WRITE
3842 Use buffered writes to flash.
3844 - CONFIG_FLASH_SPANSION_S29WS_N
3845 s29ws-n MirrorBit flash has non-standard addresses for buffered
3848 - CONFIG_SYS_FLASH_QUIET_TEST
3849 If this option is defined, the common CFI flash doesn't
3850 print it's warning upon not recognized FLASH banks. This
3851 is useful, if some of the configured banks are only
3852 optionally available.
3854 - CONFIG_FLASH_SHOW_PROGRESS
3855 If defined (must be an integer), print out countdown
3856 digits and dots. Recommended value: 45 (9..1) for 80
3857 column displays, 15 (3..1) for 40 column displays.
3859 - CONFIG_FLASH_VERIFY
3860 If defined, the content of the flash (destination) is compared
3861 against the source after the write operation. An error message
3862 will be printed when the contents are not identical.
3863 Please note that this option is useless in nearly all cases,
3864 since such flash programming errors usually are detected earlier
3865 while unprotecting/erasing/programming. Please only enable
3866 this option if you really know what you are doing.
3868 - CONFIG_SYS_RX_ETH_BUFFER:
3869 Defines the number of Ethernet receive buffers. On some
3870 Ethernet controllers it is recommended to set this value
3871 to 8 or even higher (EEPRO100 or 405 EMAC), since all
3872 buffers can be full shortly after enabling the interface
3873 on high Ethernet traffic.
3874 Defaults to 4 if not defined.
3876 - CONFIG_ENV_MAX_ENTRIES
3878 Maximum number of entries in the hash table that is used
3879 internally to store the environment settings. The default
3880 setting is supposed to be generous and should work in most
3881 cases. This setting can be used to tune behaviour; see
3882 lib/hashtable.c for details.
3884 - CONFIG_ENV_FLAGS_LIST_DEFAULT
3885 - CONFIG_ENV_FLAGS_LIST_STATIC
3886 Enable validation of the values given to environment variables when
3887 calling env set. Variables can be restricted to only decimal,
3888 hexadecimal, or boolean. If CONFIG_CMD_NET is also defined,
3889 the variables can also be restricted to IP address or MAC address.
3891 The format of the list is:
3892 type_attribute = [s|d|x|b|i|m]
3893 access_attribute = [a|r|o|c]
3894 attributes = type_attribute[access_attribute]
3895 entry = variable_name[:attributes]
3898 The type attributes are:
3899 s - String (default)
3902 b - Boolean ([1yYtT|0nNfF])
3906 The access attributes are:
3912 - CONFIG_ENV_FLAGS_LIST_DEFAULT
3913 Define this to a list (string) to define the ".flags"
3914 environment variable in the default or embedded environment.
3916 - CONFIG_ENV_FLAGS_LIST_STATIC
3917 Define this to a list (string) to define validation that
3918 should be done if an entry is not found in the ".flags"
3919 environment variable. To override a setting in the static
3920 list, simply add an entry for the same variable name to the
3923 If CONFIG_REGEX is defined, the variable_name above is evaluated as a
3924 regular expression. This allows multiple variables to define the same
3925 flags without explicitly listing them for each variable.
3927 - CONFIG_ENV_ACCESS_IGNORE_FORCE
3928 If defined, don't allow the -f switch to env set override variable
3931 - CONFIG_OMAP_PLATFORM_RESET_TIME_MAX_USEC (OMAP only)
3932 This is set by OMAP boards for the max time that reset should
3933 be asserted. See doc/README.omap-reset-time for details on how
3934 the value can be calculated on a given board.
3937 If stdint.h is available with your toolchain you can define this
3938 option to enable it. You can provide option 'USE_STDINT=1' when
3939 building U-Boot to enable this.
3941 The following definitions that deal with the placement and management
3942 of environment data (variable area); in general, we support the
3943 following configurations:
3945 - CONFIG_BUILD_ENVCRC:
3947 Builds up envcrc with the target environment so that external utils
3948 may easily extract it and embed it in final U-Boot images.
3950 - CONFIG_ENV_IS_IN_FLASH:
3952 Define this if the environment is in flash memory.
3954 a) The environment occupies one whole flash sector, which is
3955 "embedded" in the text segment with the U-Boot code. This
3956 happens usually with "bottom boot sector" or "top boot
3957 sector" type flash chips, which have several smaller
3958 sectors at the start or the end. For instance, such a
3959 layout can have sector sizes of 8, 2x4, 16, Nx32 kB. In
3960 such a case you would place the environment in one of the
3961 4 kB sectors - with U-Boot code before and after it. With
3962 "top boot sector" type flash chips, you would put the
3963 environment in one of the last sectors, leaving a gap
3964 between U-Boot and the environment.
3966 - CONFIG_ENV_OFFSET:
3968 Offset of environment data (variable area) to the
3969 beginning of flash memory; for instance, with bottom boot
3970 type flash chips the second sector can be used: the offset
3971 for this sector is given here.
3973 CONFIG_ENV_OFFSET is used relative to CONFIG_SYS_FLASH_BASE.
3977 This is just another way to specify the start address of
3978 the flash sector containing the environment (instead of
3981 - CONFIG_ENV_SECT_SIZE:
3983 Size of the sector containing the environment.
3986 b) Sometimes flash chips have few, equal sized, BIG sectors.
3987 In such a case you don't want to spend a whole sector for
3992 If you use this in combination with CONFIG_ENV_IS_IN_FLASH
3993 and CONFIG_ENV_SECT_SIZE, you can specify to use only a part
3994 of this flash sector for the environment. This saves
3995 memory for the RAM copy of the environment.
3997 It may also save flash memory if you decide to use this
3998 when your environment is "embedded" within U-Boot code,
3999 since then the remainder of the flash sector could be used
4000 for U-Boot code. It should be pointed out that this is
4001 STRONGLY DISCOURAGED from a robustness point of view:
4002 updating the environment in flash makes it always
4003 necessary to erase the WHOLE sector. If something goes
4004 wrong before the contents has been restored from a copy in
4005 RAM, your target system will be dead.
4007 - CONFIG_ENV_ADDR_REDUND
4008 CONFIG_ENV_SIZE_REDUND
4010 These settings describe a second storage area used to hold
4011 a redundant copy of the environment data, so that there is
4012 a valid backup copy in case there is a power failure during
4013 a "saveenv" operation.
4015 BE CAREFUL! Any changes to the flash layout, and some changes to the
4016 source code will make it necessary to adapt <board>/u-boot.lds*
4020 - CONFIG_ENV_IS_IN_NVRAM:
4022 Define this if you have some non-volatile memory device
4023 (NVRAM, battery buffered SRAM) which you want to use for the
4029 These two #defines are used to determine the memory area you
4030 want to use for environment. It is assumed that this memory
4031 can just be read and written to, without any special
4034 BE CAREFUL! The first access to the environment happens quite early
4035 in U-Boot initialization (when we try to get the setting of for the
4036 console baudrate). You *MUST* have mapped your NVRAM area then, or
4039 Please note that even with NVRAM we still use a copy of the
4040 environment in RAM: we could work on NVRAM directly, but we want to
4041 keep settings there always unmodified except somebody uses "saveenv"
4042 to save the current settings.
4045 - CONFIG_ENV_IS_IN_EEPROM:
4047 Use this if you have an EEPROM or similar serial access
4048 device and a driver for it.
4050 - CONFIG_ENV_OFFSET:
4053 These two #defines specify the offset and size of the
4054 environment area within the total memory of your EEPROM.
4056 - CONFIG_SYS_I2C_EEPROM_ADDR:
4057 If defined, specified the chip address of the EEPROM device.
4058 The default address is zero.
4060 - CONFIG_SYS_I2C_EEPROM_BUS:
4061 If defined, specified the i2c bus of the EEPROM device.
4063 - CONFIG_SYS_EEPROM_PAGE_WRITE_BITS:
4064 If defined, the number of bits used to address bytes in a
4065 single page in the EEPROM device. A 64 byte page, for example
4066 would require six bits.
4068 - CONFIG_SYS_EEPROM_PAGE_WRITE_DELAY_MS:
4069 If defined, the number of milliseconds to delay between
4070 page writes. The default is zero milliseconds.
4072 - CONFIG_SYS_I2C_EEPROM_ADDR_LEN:
4073 The length in bytes of the EEPROM memory array address. Note
4074 that this is NOT the chip address length!
4076 - CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW:
4077 EEPROM chips that implement "address overflow" are ones
4078 like Catalyst 24WC04/08/16 which has 9/10/11 bits of
4079 address and the extra bits end up in the "chip address" bit
4080 slots. This makes a 24WC08 (1Kbyte) chip look like four 256
4083 Note that we consider the length of the address field to
4084 still be one byte because the extra address bits are hidden
4085 in the chip address.
4087 - CONFIG_SYS_EEPROM_SIZE:
4088 The size in bytes of the EEPROM device.
4090 - CONFIG_ENV_EEPROM_IS_ON_I2C
4091 define this, if you have I2C and SPI activated, and your
4092 EEPROM, which holds the environment, is on the I2C bus.
4094 - CONFIG_I2C_ENV_EEPROM_BUS
4095 if you have an Environment on an EEPROM reached over
4096 I2C muxes, you can define here, how to reach this
4097 EEPROM. For example:
4099 #define CONFIG_I2C_ENV_EEPROM_BUS 1
4101 EEPROM which holds the environment, is reached over
4102 a pca9547 i2c mux with address 0x70, channel 3.
4104 - CONFIG_ENV_IS_IN_DATAFLASH:
4106 Define this if you have a DataFlash memory device which you
4107 want to use for the environment.
4109 - CONFIG_ENV_OFFSET:
4113 These three #defines specify the offset and size of the
4114 environment area within the total memory of your DataFlash placed
4115 at the specified address.
4117 - CONFIG_ENV_IS_IN_SPI_FLASH:
4119 Define this if you have a SPI Flash memory device which you
4120 want to use for the environment.
4122 - CONFIG_ENV_OFFSET:
4125 These two #defines specify the offset and size of the
4126 environment area within the SPI Flash. CONFIG_ENV_OFFSET must be
4127 aligned to an erase sector boundary.
4129 - CONFIG_ENV_SECT_SIZE:
4131 Define the SPI flash's sector size.
4133 - CONFIG_ENV_OFFSET_REDUND (optional):
4135 This setting describes a second storage area of CONFIG_ENV_SIZE
4136 size used to hold a redundant copy of the environment data, so
4137 that there is a valid backup copy in case there is a power failure
4138 during a "saveenv" operation. CONFIG_ENV_OFFSET_REDUND must be
4139 aligned to an erase sector boundary.
4141 - CONFIG_ENV_SPI_BUS (optional):
4142 - CONFIG_ENV_SPI_CS (optional):
4144 Define the SPI bus and chip select. If not defined they will be 0.
4146 - CONFIG_ENV_SPI_MAX_HZ (optional):
4148 Define the SPI max work clock. If not defined then use 1MHz.
4150 - CONFIG_ENV_SPI_MODE (optional):
4152 Define the SPI work mode. If not defined then use SPI_MODE_3.
4154 - CONFIG_ENV_IS_IN_REMOTE:
4156 Define this if you have a remote memory space which you
4157 want to use for the local device's environment.
4162 These two #defines specify the address and size of the
4163 environment area within the remote memory space. The
4164 local device can get the environment from remote memory
4165 space by SRIO or PCIE links.
4167 BE CAREFUL! For some special cases, the local device can not use
4168 "saveenv" command. For example, the local device will get the
4169 environment stored in a remote NOR flash by SRIO or PCIE link,
4170 but it can not erase, write this NOR flash by SRIO or PCIE interface.
4172 - CONFIG_ENV_IS_IN_NAND:
4174 Define this if you have a NAND device which you want to use
4175 for the environment.
4177 - CONFIG_ENV_OFFSET:
4180 These two #defines specify the offset and size of the environment
4181 area within the first NAND device. CONFIG_ENV_OFFSET must be
4182 aligned to an erase block boundary.
4184 - CONFIG_ENV_OFFSET_REDUND (optional):
4186 This setting describes a second storage area of CONFIG_ENV_SIZE
4187 size used to hold a redundant copy of the environment data, so
4188 that there is a valid backup copy in case there is a power failure
4189 during a "saveenv" operation. CONFIG_ENV_OFFSET_REDUND must be
4190 aligned to an erase block boundary.
4192 - CONFIG_ENV_RANGE (optional):
4194 Specifies the length of the region in which the environment
4195 can be written. This should be a multiple of the NAND device's
4196 block size. Specifying a range with more erase blocks than
4197 are needed to hold CONFIG_ENV_SIZE allows bad blocks within
4198 the range to be avoided.
4200 - CONFIG_ENV_OFFSET_OOB (optional):
4202 Enables support for dynamically retrieving the offset of the
4203 environment from block zero's out-of-band data. The
4204 "nand env.oob" command can be used to record this offset.
4205 Currently, CONFIG_ENV_OFFSET_REDUND is not supported when
4206 using CONFIG_ENV_OFFSET_OOB.
4208 - CONFIG_NAND_ENV_DST
4210 Defines address in RAM to which the nand_spl code should copy the
4211 environment. If redundant environment is used, it will be copied to
4212 CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE.
4214 - CONFIG_ENV_IS_IN_UBI:
4216 Define this if you have an UBI volume that you want to use for the
4217 environment. This has the benefit of wear-leveling the environment
4218 accesses, which is important on NAND.
4220 - CONFIG_ENV_UBI_PART:
4222 Define this to a string that is the mtd partition containing the UBI.
4224 - CONFIG_ENV_UBI_VOLUME:
4226 Define this to the name of the volume that you want to store the
4229 - CONFIG_ENV_UBI_VOLUME_REDUND:
4231 Define this to the name of another volume to store a second copy of
4232 the environment in. This will enable redundant environments in UBI.
4233 It is assumed that both volumes are in the same MTD partition.
4235 - CONFIG_UBI_SILENCE_MSG
4236 - CONFIG_UBIFS_SILENCE_MSG
4238 You will probably want to define these to avoid a really noisy system
4239 when storing the env in UBI.
4241 - CONFIG_ENV_IS_IN_FAT:
4242 Define this if you want to use the FAT file system for the environment.
4244 - FAT_ENV_INTERFACE:
4246 Define this to a string that is the name of the block device.
4248 - FAT_ENV_DEV_AND_PART:
4250 Define this to a string to specify the partition of the device. It can
4253 "D:P", "D:0", "D", "D:" or "D:auto" (D, P are integers. And P >= 1)
4254 - "D:P": device D partition P. Error occurs if device D has no
4257 - "D" or "D:": device D partition 1 if device D has partition
4258 table, or the whole device D if has no partition
4260 - "D:auto": first partition in device D with bootable flag set.
4261 If none, first valid partition in device D. If no
4262 partition table then means device D.
4266 It's a string of the FAT file name. This file use to store the
4270 This should be defined. Otherwise it cannot save the environment file.
4272 - CONFIG_ENV_IS_IN_MMC:
4274 Define this if you have an MMC device which you want to use for the
4277 - CONFIG_SYS_MMC_ENV_DEV:
4279 Specifies which MMC device the environment is stored in.
4281 - CONFIG_SYS_MMC_ENV_PART (optional):
4283 Specifies which MMC partition the environment is stored in. If not
4284 set, defaults to partition 0, the user area. Common values might be
4285 1 (first MMC boot partition), 2 (second MMC boot partition).
4287 - CONFIG_ENV_OFFSET:
4290 These two #defines specify the offset and size of the environment
4291 area within the specified MMC device.
4293 If offset is positive (the usual case), it is treated as relative to
4294 the start of the MMC partition. If offset is negative, it is treated
4295 as relative to the end of the MMC partition. This can be useful if
4296 your board may be fitted with different MMC devices, which have
4297 different sizes for the MMC partitions, and you always want the
4298 environment placed at the very end of the partition, to leave the
4299 maximum possible space before it, to store other data.
4301 These two values are in units of bytes, but must be aligned to an
4302 MMC sector boundary.
4304 - CONFIG_ENV_OFFSET_REDUND (optional):
4306 Specifies a second storage area, of CONFIG_ENV_SIZE size, used to
4307 hold a redundant copy of the environment data. This provides a
4308 valid backup copy in case the other copy is corrupted, e.g. due
4309 to a power failure during a "saveenv" operation.
4311 This value may also be positive or negative; this is handled in the
4312 same way as CONFIG_ENV_OFFSET.
4314 This value is also in units of bytes, but must also be aligned to
4315 an MMC sector boundary.
4317 - CONFIG_ENV_SIZE_REDUND (optional):
4319 This value need not be set, even when CONFIG_ENV_OFFSET_REDUND is
4320 set. If this value is set, it must be set to the same value as
4323 - CONFIG_SYS_SPI_INIT_OFFSET
4325 Defines offset to the initial SPI buffer area in DPRAM. The
4326 area is used at an early stage (ROM part) if the environment
4327 is configured to reside in the SPI EEPROM: We need a 520 byte
4328 scratch DPRAM area. It is used between the two initialization
4329 calls (spi_init_f() and spi_init_r()). A value of 0xB00 seems
4330 to be a good choice since it makes it far enough from the
4331 start of the data area as well as from the stack pointer.
4333 Please note that the environment is read-only until the monitor
4334 has been relocated to RAM and a RAM copy of the environment has been
4335 created; also, when using EEPROM you will have to use getenv_f()
4336 until then to read environment variables.
4338 The environment is protected by a CRC32 checksum. Before the monitor
4339 is relocated into RAM, as a result of a bad CRC you will be working
4340 with the compiled-in default environment - *silently*!!! [This is
4341 necessary, because the first environment variable we need is the
4342 "baudrate" setting for the console - if we have a bad CRC, we don't
4343 have any device yet where we could complain.]
4345 Note: once the monitor has been relocated, then it will complain if
4346 the default environment is used; a new CRC is computed as soon as you
4347 use the "saveenv" command to store a valid environment.
4349 - CONFIG_SYS_FAULT_ECHO_LINK_DOWN:
4350 Echo the inverted Ethernet link state to the fault LED.
4352 Note: If this option is active, then CONFIG_SYS_FAULT_MII_ADDR
4353 also needs to be defined.
4355 - CONFIG_SYS_FAULT_MII_ADDR:
4356 MII address of the PHY to check for the Ethernet link state.
4358 - CONFIG_NS16550_MIN_FUNCTIONS:
4359 Define this if you desire to only have use of the NS16550_init
4360 and NS16550_putc functions for the serial driver located at
4361 drivers/serial/ns16550.c. This option is useful for saving
4362 space for already greatly restricted images, including but not
4363 limited to NAND_SPL configurations.
4365 - CONFIG_DISPLAY_BOARDINFO
4366 Display information about the board that U-Boot is running on
4367 when U-Boot starts up. The board function checkboard() is called
4370 - CONFIG_DISPLAY_BOARDINFO_LATE
4371 Similar to the previous option, but display this information
4372 later, once stdio is running and output goes to the LCD, if
4375 - CONFIG_BOARD_SIZE_LIMIT:
4376 Maximum size of the U-Boot image. When defined, the
4377 build system checks that the actual size does not
4380 Low Level (hardware related) configuration options:
4381 ---------------------------------------------------
4383 - CONFIG_SYS_CACHELINE_SIZE:
4384 Cache Line Size of the CPU.
4386 - CONFIG_SYS_DEFAULT_IMMR:
4387 Default address of the IMMR after system reset.
4389 Needed on some 8260 systems (MPC8260ADS, PQ2FADS-ZU,
4390 and RPXsuper) to be able to adjust the position of
4391 the IMMR register after a reset.
4393 - CONFIG_SYS_CCSRBAR_DEFAULT:
4394 Default (power-on reset) physical address of CCSR on Freescale
4397 - CONFIG_SYS_CCSRBAR:
4398 Virtual address of CCSR. On a 32-bit build, this is typically
4399 the same value as CONFIG_SYS_CCSRBAR_DEFAULT.
4401 CONFIG_SYS_DEFAULT_IMMR must also be set to this value,
4402 for cross-platform code that uses that macro instead.
4404 - CONFIG_SYS_CCSRBAR_PHYS:
4405 Physical address of CCSR. CCSR can be relocated to a new
4406 physical address, if desired. In this case, this macro should
4407 be set to that address. Otherwise, it should be set to the
4408 same value as CONFIG_SYS_CCSRBAR_DEFAULT. For example, CCSR
4409 is typically relocated on 36-bit builds. It is recommended
4410 that this macro be defined via the _HIGH and _LOW macros:
4412 #define CONFIG_SYS_CCSRBAR_PHYS ((CONFIG_SYS_CCSRBAR_PHYS_HIGH
4413 * 1ull) << 32 | CONFIG_SYS_CCSRBAR_PHYS_LOW)
4415 - CONFIG_SYS_CCSRBAR_PHYS_HIGH:
4416 Bits 33-36 of CONFIG_SYS_CCSRBAR_PHYS. This value is typically
4417 either 0 (32-bit build) or 0xF (36-bit build). This macro is
4418 used in assembly code, so it must not contain typecasts or
4419 integer size suffixes (e.g. "ULL").
4421 - CONFIG_SYS_CCSRBAR_PHYS_LOW:
4422 Lower 32-bits of CONFIG_SYS_CCSRBAR_PHYS. This macro is
4423 used in assembly code, so it must not contain typecasts or
4424 integer size suffixes (e.g. "ULL").
4426 - CONFIG_SYS_CCSR_DO_NOT_RELOCATE:
4427 If this macro is defined, then CONFIG_SYS_CCSRBAR_PHYS will be
4428 forced to a value that ensures that CCSR is not relocated.
4430 - Floppy Disk Support:
4431 CONFIG_SYS_FDC_DRIVE_NUMBER
4433 the default drive number (default value 0)
4435 CONFIG_SYS_ISA_IO_STRIDE
4437 defines the spacing between FDC chipset registers
4440 CONFIG_SYS_ISA_IO_OFFSET
4442 defines the offset of register from address. It
4443 depends on which part of the data bus is connected to
4444 the FDC chipset. (default value 0)
4446 If CONFIG_SYS_ISA_IO_STRIDE CONFIG_SYS_ISA_IO_OFFSET and
4447 CONFIG_SYS_FDC_DRIVE_NUMBER are undefined, they take their
4450 if CONFIG_SYS_FDC_HW_INIT is defined, then the function
4451 fdc_hw_init() is called at the beginning of the FDC
4452 setup. fdc_hw_init() must be provided by the board
4453 source code. It is used to make hardware-dependent
4457 Most IDE controllers were designed to be connected with PCI
4458 interface. Only few of them were designed for AHB interface.
4459 When software is doing ATA command and data transfer to
4460 IDE devices through IDE-AHB controller, some additional
4461 registers accessing to these kind of IDE-AHB controller
4464 - CONFIG_SYS_IMMR: Physical address of the Internal Memory.
4465 DO NOT CHANGE unless you know exactly what you're
4466 doing! (11-4) [MPC8xx/82xx systems only]
4468 - CONFIG_SYS_INIT_RAM_ADDR:
4470 Start address of memory area that can be used for
4471 initial data and stack; please note that this must be
4472 writable memory that is working WITHOUT special
4473 initialization, i. e. you CANNOT use normal RAM which
4474 will become available only after programming the
4475 memory controller and running certain initialization
4478 U-Boot uses the following memory types:
4479 - MPC8xx and MPC8260: IMMR (internal memory of the CPU)
4480 - MPC824X: data cache
4481 - PPC4xx: data cache
4483 - CONFIG_SYS_GBL_DATA_OFFSET:
4485 Offset of the initial data structure in the memory
4486 area defined by CONFIG_SYS_INIT_RAM_ADDR. Usually
4487 CONFIG_SYS_GBL_DATA_OFFSET is chosen such that the initial
4488 data is located at the end of the available space
4489 (sometimes written as (CONFIG_SYS_INIT_RAM_SIZE -
4490 GENERATED_GBL_DATA_SIZE), and the initial stack is just
4491 below that area (growing from (CONFIG_SYS_INIT_RAM_ADDR +
4492 CONFIG_SYS_GBL_DATA_OFFSET) downward.
4495 On the MPC824X (or other systems that use the data
4496 cache for initial memory) the address chosen for
4497 CONFIG_SYS_INIT_RAM_ADDR is basically arbitrary - it must
4498 point to an otherwise UNUSED address space between
4499 the top of RAM and the start of the PCI space.
4501 - CONFIG_SYS_SIUMCR: SIU Module Configuration (11-6)
4503 - CONFIG_SYS_SYPCR: System Protection Control (11-9)
4505 - CONFIG_SYS_TBSCR: Time Base Status and Control (11-26)
4507 - CONFIG_SYS_PISCR: Periodic Interrupt Status and Control (11-31)
4509 - CONFIG_SYS_PLPRCR: PLL, Low-Power, and Reset Control Register (15-30)
4511 - CONFIG_SYS_SCCR: System Clock and reset Control Register (15-27)
4513 - CONFIG_SYS_OR_TIMING_SDRAM:
4516 - CONFIG_SYS_MAMR_PTA:
4517 periodic timer for refresh
4519 - CONFIG_SYS_DER: Debug Event Register (37-47)
4521 - FLASH_BASE0_PRELIM, FLASH_BASE1_PRELIM, CONFIG_SYS_REMAP_OR_AM,
4522 CONFIG_SYS_PRELIM_OR_AM, CONFIG_SYS_OR_TIMING_FLASH, CONFIG_SYS_OR0_REMAP,
4523 CONFIG_SYS_OR0_PRELIM, CONFIG_SYS_BR0_PRELIM, CONFIG_SYS_OR1_REMAP, CONFIG_SYS_OR1_PRELIM,
4524 CONFIG_SYS_BR1_PRELIM:
4525 Memory Controller Definitions: BR0/1 and OR0/1 (FLASH)
4527 - SDRAM_BASE2_PRELIM, SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE,
4528 CONFIG_SYS_OR_TIMING_SDRAM, CONFIG_SYS_OR2_PRELIM, CONFIG_SYS_BR2_PRELIM,
4529 CONFIG_SYS_OR3_PRELIM, CONFIG_SYS_BR3_PRELIM:
4530 Memory Controller Definitions: BR2/3 and OR2/3 (SDRAM)
4532 - CONFIG_SYS_MAMR_PTA, CONFIG_SYS_MPTPR_2BK_4K, CONFIG_SYS_MPTPR_1BK_4K, CONFIG_SYS_MPTPR_2BK_8K,
4533 CONFIG_SYS_MPTPR_1BK_8K, CONFIG_SYS_MAMR_8COL, CONFIG_SYS_MAMR_9COL:
4534 Machine Mode Register and Memory Periodic Timer
4535 Prescaler definitions (SDRAM timing)
4537 - CONFIG_SYS_I2C_UCODE_PATCH, CONFIG_SYS_I2C_DPMEM_OFFSET [0x1FC0]:
4538 enable I2C microcode relocation patch (MPC8xx);
4539 define relocation offset in DPRAM [DSP2]
4541 - CONFIG_SYS_SMC_UCODE_PATCH, CONFIG_SYS_SMC_DPMEM_OFFSET [0x1FC0]:
4542 enable SMC microcode relocation patch (MPC8xx);
4543 define relocation offset in DPRAM [SMC1]
4545 - CONFIG_SYS_SPI_UCODE_PATCH, CONFIG_SYS_SPI_DPMEM_OFFSET [0x1FC0]:
4546 enable SPI microcode relocation patch (MPC8xx);
4547 define relocation offset in DPRAM [SCC4]
4549 - CONFIG_SYS_USE_OSCCLK:
4550 Use OSCM clock mode on MBX8xx board. Be careful,
4551 wrong setting might damage your board. Read
4552 doc/README.MBX before setting this variable!
4554 - CONFIG_SYS_CPM_POST_WORD_ADDR: (MPC8xx, MPC8260 only)
4555 Offset of the bootmode word in DPRAM used by post
4556 (Power On Self Tests). This definition overrides
4557 #define'd default value in commproc.h resp.
4560 - CONFIG_SYS_PCI_SLV_MEM_LOCAL, CONFIG_SYS_PCI_SLV_MEM_BUS, CONFIG_SYS_PICMR0_MASK_ATTRIB,
4561 CONFIG_SYS_PCI_MSTR0_LOCAL, CONFIG_SYS_PCIMSK0_MASK, CONFIG_SYS_PCI_MSTR1_LOCAL,
4562 CONFIG_SYS_PCIMSK1_MASK, CONFIG_SYS_PCI_MSTR_MEM_LOCAL, CONFIG_SYS_PCI_MSTR_MEM_BUS,
4563 CONFIG_SYS_CPU_PCI_MEM_START, CONFIG_SYS_PCI_MSTR_MEM_SIZE, CONFIG_SYS_POCMR0_MASK_ATTRIB,
4564 CONFIG_SYS_PCI_MSTR_MEMIO_LOCAL, CONFIG_SYS_PCI_MSTR_MEMIO_BUS, CPU_PCI_MEMIO_START,
4565 CONFIG_SYS_PCI_MSTR_MEMIO_SIZE, CONFIG_SYS_POCMR1_MASK_ATTRIB, CONFIG_SYS_PCI_MSTR_IO_LOCAL,
4566 CONFIG_SYS_PCI_MSTR_IO_BUS, CONFIG_SYS_CPU_PCI_IO_START, CONFIG_SYS_PCI_MSTR_IO_SIZE,
4567 CONFIG_SYS_POCMR2_MASK_ATTRIB: (MPC826x only)
4568 Overrides the default PCI memory map in arch/powerpc/cpu/mpc8260/pci.c if set.
4570 - CONFIG_PCI_DISABLE_PCIE:
4571 Disable PCI-Express on systems where it is supported but not
4574 - CONFIG_PCI_ENUM_ONLY
4575 Only scan through and get the devices on the buses.
4576 Don't do any setup work, presumably because someone or
4577 something has already done it, and we don't need to do it
4578 a second time. Useful for platforms that are pre-booted
4579 by coreboot or similar.
4581 - CONFIG_PCI_INDIRECT_BRIDGE:
4582 Enable support for indirect PCI bridges.
4585 Chip has SRIO or not
4588 Board has SRIO 1 port available
4591 Board has SRIO 2 port available
4593 - CONFIG_SRIO_PCIE_BOOT_MASTER
4594 Board can support master function for Boot from SRIO and PCIE
4596 - CONFIG_SYS_SRIOn_MEM_VIRT:
4597 Virtual Address of SRIO port 'n' memory region
4599 - CONFIG_SYS_SRIOn_MEM_PHYS:
4600 Physical Address of SRIO port 'n' memory region
4602 - CONFIG_SYS_SRIOn_MEM_SIZE:
4603 Size of SRIO port 'n' memory region
4605 - CONFIG_SYS_NAND_BUSWIDTH_16BIT
4606 Defined to tell the NAND controller that the NAND chip is using
4608 Not all NAND drivers use this symbol.
4609 Example of drivers that use it:
4610 - drivers/mtd/nand/ndfc.c
4611 - drivers/mtd/nand/mxc_nand.c
4613 - CONFIG_SYS_NDFC_EBC0_CFG
4614 Sets the EBC0_CFG register for the NDFC. If not defined
4615 a default value will be used.
4618 Get DDR timing information from an I2C EEPROM. Common
4619 with pluggable memory modules such as SODIMMs
4622 I2C address of the SPD EEPROM
4624 - CONFIG_SYS_SPD_BUS_NUM
4625 If SPD EEPROM is on an I2C bus other than the first
4626 one, specify here. Note that the value must resolve
4627 to something your driver can deal with.
4629 - CONFIG_SYS_DDR_RAW_TIMING
4630 Get DDR timing information from other than SPD. Common with
4631 soldered DDR chips onboard without SPD. DDR raw timing
4632 parameters are extracted from datasheet and hard-coded into
4633 header files or board specific files.
4635 - CONFIG_FSL_DDR_INTERACTIVE
4636 Enable interactive DDR debugging. See doc/README.fsl-ddr.
4638 - CONFIG_FSL_DDR_SYNC_REFRESH
4639 Enable sync of refresh for multiple controllers.
4641 - CONFIG_FSL_DDR_BIST
4642 Enable built-in memory test for Freescale DDR controllers.
4644 - CONFIG_SYS_83XX_DDR_USES_CS0
4645 Only for 83xx systems. If specified, then DDR should
4646 be configured using CS0 and CS1 instead of CS2 and CS3.
4648 - CONFIG_ETHER_ON_FEC[12]
4649 Define to enable FEC[12] on a 8xx series processor.
4651 - CONFIG_FEC[12]_PHY
4652 Define to the hardcoded PHY address which corresponds
4653 to the given FEC; i. e.
4654 #define CONFIG_FEC1_PHY 4
4655 means that the PHY with address 4 is connected to FEC1
4657 When set to -1, means to probe for first available.
4659 - CONFIG_FEC[12]_PHY_NORXERR
4660 The PHY does not have a RXERR line (RMII only).
4661 (so program the FEC to ignore it).
4664 Enable RMII mode for all FECs.
4665 Note that this is a global option, we can't
4666 have one FEC in standard MII mode and another in RMII mode.
4668 - CONFIG_CRC32_VERIFY
4669 Add a verify option to the crc32 command.
4672 => crc32 -v <address> <count> <crc32>
4674 Where address/count indicate a memory area
4675 and crc32 is the correct crc32 which the
4679 Add the "loopw" memory command. This only takes effect if
4680 the memory commands are activated globally (CONFIG_CMD_MEM).
4683 Add the "mdc" and "mwc" memory commands. These are cyclic
4688 This command will print 4 bytes (10,11,12,13) each 500 ms.
4690 => mwc.l 100 12345678 10
4691 This command will write 12345678 to address 100 all 10 ms.
4693 This only takes effect if the memory commands are activated
4694 globally (CONFIG_CMD_MEM).
4696 - CONFIG_SKIP_LOWLEVEL_INIT
4697 [ARM, NDS32, MIPS only] If this variable is defined, then certain
4698 low level initializations (like setting up the memory
4699 controller) are omitted and/or U-Boot does not
4700 relocate itself into RAM.
4702 Normally this variable MUST NOT be defined. The only
4703 exception is when U-Boot is loaded (to RAM) by some
4704 other boot loader or by a debugger which performs
4705 these initializations itself.
4707 - CONFIG_SKIP_LOWLEVEL_INIT_ONLY
4708 [ARM926EJ-S only] This allows just the call to lowlevel_init()
4709 to be skipped. The normal CP15 init (such as enabling the
4710 instruction cache) is still performed.
4713 Modifies the behaviour of start.S when compiling a loader
4714 that is executed before the actual U-Boot. E.g. when
4715 compiling a NAND SPL.
4718 Modifies the behaviour of start.S when compiling a loader
4719 that is executed after the SPL and before the actual U-Boot.
4720 It is loaded by the SPL.
4722 - CONFIG_SYS_MPC85XX_NO_RESETVEC
4723 Only for 85xx systems. If this variable is specified, the section
4724 .resetvec is not kept and the section .bootpg is placed in the
4725 previous 4k of the .text section.
4727 - CONFIG_ARCH_MAP_SYSMEM
4728 Generally U-Boot (and in particular the md command) uses
4729 effective address. It is therefore not necessary to regard
4730 U-Boot address as virtual addresses that need to be translated
4731 to physical addresses. However, sandbox requires this, since
4732 it maintains its own little RAM buffer which contains all
4733 addressable memory. This option causes some memory accesses
4734 to be mapped through map_sysmem() / unmap_sysmem().
4736 - CONFIG_USE_ARCH_MEMCPY
4737 CONFIG_USE_ARCH_MEMSET
4738 If these options are used a optimized version of memcpy/memset will
4739 be used if available. These functions may be faster under some
4740 conditions but may increase the binary size.
4742 - CONFIG_X86_RESET_VECTOR
4743 If defined, the x86 reset vector code is included. This is not
4744 needed when U-Boot is running from Coreboot.
4747 Defines the MPU clock speed (in MHz).
4749 NOTE : currently only supported on AM335x platforms.
4751 - CONFIG_SPL_AM33XX_ENABLE_RTC32K_OSC:
4752 Enables the RTC32K OSC on AM33xx based plattforms
4754 - CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
4755 Option to disable subpage write in NAND driver
4756 driver that uses this:
4757 drivers/mtd/nand/davinci_nand.c
4759 Freescale QE/FMAN Firmware Support:
4760 -----------------------------------
4762 The Freescale QUICCEngine (QE) and Frame Manager (FMAN) both support the
4763 loading of "firmware", which is encoded in the QE firmware binary format.
4764 This firmware often needs to be loaded during U-Boot booting, so macros
4765 are used to identify the storage device (NOR flash, SPI, etc) and the address
4768 - CONFIG_SYS_FMAN_FW_ADDR
4769 The address in the storage device where the FMAN microcode is located. The
4770 meaning of this address depends on which CONFIG_SYS_QE_FW_IN_xxx macro
4773 - CONFIG_SYS_QE_FW_ADDR
4774 The address in the storage device where the QE microcode is located. The
4775 meaning of this address depends on which CONFIG_SYS_QE_FW_IN_xxx macro
4778 - CONFIG_SYS_QE_FMAN_FW_LENGTH
4779 The maximum possible size of the firmware. The firmware binary format
4780 has a field that specifies the actual size of the firmware, but it
4781 might not be possible to read any part of the firmware unless some
4782 local storage is allocated to hold the entire firmware first.
4784 - CONFIG_SYS_QE_FMAN_FW_IN_NOR
4785 Specifies that QE/FMAN firmware is located in NOR flash, mapped as
4786 normal addressable memory via the LBC. CONFIG_SYS_FMAN_FW_ADDR is the
4787 virtual address in NOR flash.
4789 - CONFIG_SYS_QE_FMAN_FW_IN_NAND
4790 Specifies that QE/FMAN firmware is located in NAND flash.
4791 CONFIG_SYS_FMAN_FW_ADDR is the offset within NAND flash.
4793 - CONFIG_SYS_QE_FMAN_FW_IN_MMC
4794 Specifies that QE/FMAN firmware is located on the primary SD/MMC
4795 device. CONFIG_SYS_FMAN_FW_ADDR is the byte offset on that device.
4797 - CONFIG_SYS_QE_FMAN_FW_IN_REMOTE
4798 Specifies that QE/FMAN firmware is located in the remote (master)
4799 memory space. CONFIG_SYS_FMAN_FW_ADDR is a virtual address which
4800 can be mapped from slave TLB->slave LAW->slave SRIO or PCIE outbound
4801 window->master inbound window->master LAW->the ucode address in
4802 master's memory space.
4804 Freescale Layerscape Management Complex Firmware Support:
4805 ---------------------------------------------------------
4806 The Freescale Layerscape Management Complex (MC) supports the loading of
4808 This firmware often needs to be loaded during U-Boot booting, so macros
4809 are used to identify the storage device (NOR flash, SPI, etc) and the address
4812 - CONFIG_FSL_MC_ENET
4813 Enable the MC driver for Layerscape SoCs.
4815 Freescale Layerscape Debug Server Support:
4816 -------------------------------------------
4817 The Freescale Layerscape Debug Server Support supports the loading of
4818 "Debug Server firmware" and triggering SP boot-rom.
4819 This firmware often needs to be loaded during U-Boot booting.
4821 - CONFIG_SYS_MC_RSV_MEM_ALIGN
4822 Define alignment of reserved memory MC requires
4827 In order to achieve reproducible builds, timestamps used in the U-Boot build
4828 process have to be set to a fixed value.
4830 This is done using the SOURCE_DATE_EPOCH environment variable.
4831 SOURCE_DATE_EPOCH is to be set on the build host's shell, not as a configuration
4832 option for U-Boot or an environment variable in U-Boot.
4834 SOURCE_DATE_EPOCH should be set to a number of seconds since the epoch, in UTC.
4836 Building the Software:
4837 ======================
4839 Building U-Boot has been tested in several native build environments
4840 and in many different cross environments. Of course we cannot support
4841 all possibly existing versions of cross development tools in all
4842 (potentially obsolete) versions. In case of tool chain problems we
4843 recommend to use the ELDK (see http://www.denx.de/wiki/DULG/ELDK)
4844 which is extensively used to build and test U-Boot.
4846 If you are not using a native environment, it is assumed that you
4847 have GNU cross compiling tools available in your path. In this case,
4848 you must set the environment variable CROSS_COMPILE in your shell.
4849 Note that no changes to the Makefile or any other source files are
4850 necessary. For example using the ELDK on a 4xx CPU, please enter:
4852 $ CROSS_COMPILE=ppc_4xx-
4853 $ export CROSS_COMPILE
4855 Note: If you wish to generate Windows versions of the utilities in
4856 the tools directory you can use the MinGW toolchain
4857 (http://www.mingw.org). Set your HOST tools to the MinGW
4858 toolchain and execute 'make tools'. For example:
4860 $ make HOSTCC=i586-mingw32msvc-gcc HOSTSTRIP=i586-mingw32msvc-strip tools
4862 Binaries such as tools/mkimage.exe will be created which can
4863 be executed on computers running Windows.
4865 U-Boot is intended to be simple to build. After installing the
4866 sources you must configure U-Boot for one specific board type. This
4871 where "NAME_defconfig" is the name of one of the existing configu-
4872 rations; see boards.cfg for supported names.
4874 Note: for some board special configuration names may exist; check if
4875 additional information is available from the board vendor; for
4876 instance, the TQM823L systems are available without (standard)
4877 or with LCD support. You can select such additional "features"
4878 when choosing the configuration, i. e.
4880 make TQM823L_defconfig
4881 - will configure for a plain TQM823L, i. e. no LCD support
4883 make TQM823L_LCD_defconfig
4884 - will configure for a TQM823L with U-Boot console on LCD
4889 Finally, type "make all", and you should get some working U-Boot
4890 images ready for download to / installation on your system:
4892 - "u-boot.bin" is a raw binary image
4893 - "u-boot" is an image in ELF binary format
4894 - "u-boot.srec" is in Motorola S-Record format
4896 By default the build is performed locally and the objects are saved
4897 in the source directory. One of the two methods can be used to change
4898 this behavior and build U-Boot to some external directory:
4900 1. Add O= to the make command line invocations:
4902 make O=/tmp/build distclean
4903 make O=/tmp/build NAME_defconfig
4904 make O=/tmp/build all
4906 2. Set environment variable KBUILD_OUTPUT to point to the desired location:
4908 export KBUILD_OUTPUT=/tmp/build
4913 Note that the command line "O=" setting overrides the KBUILD_OUTPUT environment
4917 Please be aware that the Makefiles assume you are using GNU make, so
4918 for instance on NetBSD you might need to use "gmake" instead of
4922 If the system board that you have is not listed, then you will need
4923 to port U-Boot to your hardware platform. To do this, follow these
4926 1. Create a new directory to hold your board specific code. Add any
4927 files you need. In your board directory, you will need at least
4928 the "Makefile" and a "<board>.c".
4929 2. Create a new configuration file "include/configs/<board>.h" for
4931 3. If you're porting U-Boot to a new CPU, then also create a new
4932 directory to hold your CPU specific code. Add any files you need.
4933 4. Run "make <board>_defconfig" with your new name.
4934 5. Type "make", and you should get a working "u-boot.srec" file
4935 to be installed on your target system.
4936 6. Debug and solve any problems that might arise.
4937 [Of course, this last step is much harder than it sounds.]
4940 Testing of U-Boot Modifications, Ports to New Hardware, etc.:
4941 ==============================================================
4943 If you have modified U-Boot sources (for instance added a new board
4944 or support for new devices, a new CPU, etc.) you are expected to
4945 provide feedback to the other developers. The feedback normally takes
4946 the form of a "patch", i. e. a context diff against a certain (latest
4947 official or latest in the git repository) version of U-Boot sources.
4949 But before you submit such a patch, please verify that your modifi-
4950 cation did not break existing code. At least make sure that *ALL* of
4951 the supported boards compile WITHOUT ANY compiler warnings. To do so,
4952 just run the buildman script (tools/buildman/buildman), which will
4953 configure and build U-Boot for ALL supported system. Be warned, this
4954 will take a while. Please see the buildman README, or run 'buildman -H'
4958 See also "U-Boot Porting Guide" below.
4961 Monitor Commands - Overview:
4962 ============================
4964 go - start application at address 'addr'
4965 run - run commands in an environment variable
4966 bootm - boot application image from memory
4967 bootp - boot image via network using BootP/TFTP protocol
4968 bootz - boot zImage from memory
4969 tftpboot- boot image via network using TFTP protocol
4970 and env variables "ipaddr" and "serverip"
4971 (and eventually "gatewayip")
4972 tftpput - upload a file via network using TFTP protocol
4973 rarpboot- boot image via network using RARP/TFTP protocol
4974 diskboot- boot from IDE devicebootd - boot default, i.e., run 'bootcmd'
4975 loads - load S-Record file over serial line
4976 loadb - load binary file over serial line (kermit mode)
4978 mm - memory modify (auto-incrementing)
4979 nm - memory modify (constant address)
4980 mw - memory write (fill)
4982 cmp - memory compare
4983 crc32 - checksum calculation
4984 i2c - I2C sub-system
4985 sspi - SPI utility commands
4986 base - print or set address offset
4987 printenv- print environment variables
4988 setenv - set environment variables
4989 saveenv - save environment variables to persistent storage
4990 protect - enable or disable FLASH write protection
4991 erase - erase FLASH memory
4992 flinfo - print FLASH memory information
4993 nand - NAND memory operations (see doc/README.nand)
4994 bdinfo - print Board Info structure
4995 iminfo - print header information for application image
4996 coninfo - print console devices and informations
4997 ide - IDE sub-system
4998 loop - infinite loop on address range
4999 loopw - infinite write loop on address range
5000 mtest - simple RAM test
5001 icache - enable or disable instruction cache
5002 dcache - enable or disable data cache
5003 reset - Perform RESET of the CPU
5004 echo - echo args to console
5005 version - print monitor version
5006 help - print online help
5007 ? - alias for 'help'
5010 Monitor Commands - Detailed Description:
5011 ========================================
5015 For now: just type "help <command>".
5018 Environment Variables:
5019 ======================
5021 U-Boot supports user configuration using Environment Variables which
5022 can be made persistent by saving to Flash memory.
5024 Environment Variables are set using "setenv", printed using
5025 "printenv", and saved to Flash using "saveenv". Using "setenv"
5026 without a value can be used to delete a variable from the
5027 environment. As long as you don't save the environment you are
5028 working with an in-memory copy. In case the Flash area containing the
5029 environment is erased by accident, a default environment is provided.
5031 Some configuration options can be set using Environment Variables.
5033 List of environment variables (most likely not complete):
5035 baudrate - see CONFIG_BAUDRATE
5037 bootdelay - see CONFIG_BOOTDELAY
5039 bootcmd - see CONFIG_BOOTCOMMAND
5041 bootargs - Boot arguments when booting an RTOS image
5043 bootfile - Name of the image to load with TFTP
5045 bootm_low - Memory range available for image processing in the bootm
5046 command can be restricted. This variable is given as
5047 a hexadecimal number and defines lowest address allowed
5048 for use by the bootm command. See also "bootm_size"
5049 environment variable. Address defined by "bootm_low" is
5050 also the base of the initial memory mapping for the Linux
5051 kernel -- see the description of CONFIG_SYS_BOOTMAPSZ and
5054 bootm_mapsize - Size of the initial memory mapping for the Linux kernel.
5055 This variable is given as a hexadecimal number and it
5056 defines the size of the memory region starting at base
5057 address bootm_low that is accessible by the Linux kernel
5058 during early boot. If unset, CONFIG_SYS_BOOTMAPSZ is used
5059 as the default value if it is defined, and bootm_size is
5062 bootm_size - Memory range available for image processing in the bootm
5063 command can be restricted. This variable is given as
5064 a hexadecimal number and defines the size of the region
5065 allowed for use by the bootm command. See also "bootm_low"
5066 environment variable.
5068 updatefile - Location of the software update file on a TFTP server, used
5069 by the automatic software update feature. Please refer to
5070 documentation in doc/README.update for more details.
5072 autoload - if set to "no" (any string beginning with 'n'),
5073 "bootp" will just load perform a lookup of the
5074 configuration from the BOOTP server, but not try to
5075 load any image using TFTP
5077 autostart - if set to "yes", an image loaded using the "bootp",
5078 "rarpboot", "tftpboot" or "diskboot" commands will
5079 be automatically started (by internally calling
5082 If set to "no", a standalone image passed to the
5083 "bootm" command will be copied to the load address
5084 (and eventually uncompressed), but NOT be started.
5085 This can be used to load and uncompress arbitrary
5088 fdt_high - if set this restricts the maximum address that the
5089 flattened device tree will be copied into upon boot.
5090 For example, if you have a system with 1 GB memory
5091 at physical address 0x10000000, while Linux kernel
5092 only recognizes the first 704 MB as low memory, you
5093 may need to set fdt_high as 0x3C000000 to have the
5094 device tree blob be copied to the maximum address
5095 of the 704 MB low memory, so that Linux kernel can
5096 access it during the boot procedure.
5098 If this is set to the special value 0xFFFFFFFF then
5099 the fdt will not be copied at all on boot. For this
5100 to work it must reside in writable memory, have
5101 sufficient padding on the end of it for u-boot to
5102 add the information it needs into it, and the memory
5103 must be accessible by the kernel.
5105 fdtcontroladdr- if set this is the address of the control flattened
5106 device tree used by U-Boot when CONFIG_OF_CONTROL is
5109 i2cfast - (PPC405GP|PPC405EP only)
5110 if set to 'y' configures Linux I2C driver for fast
5111 mode (400kHZ). This environment variable is used in
5112 initialization code. So, for changes to be effective
5113 it must be saved and board must be reset.
5115 initrd_high - restrict positioning of initrd images:
5116 If this variable is not set, initrd images will be
5117 copied to the highest possible address in RAM; this
5118 is usually what you want since it allows for
5119 maximum initrd size. If for some reason you want to
5120 make sure that the initrd image is loaded below the
5121 CONFIG_SYS_BOOTMAPSZ limit, you can set this environment
5122 variable to a value of "no" or "off" or "0".
5123 Alternatively, you can set it to a maximum upper
5124 address to use (U-Boot will still check that it
5125 does not overwrite the U-Boot stack and data).
5127 For instance, when you have a system with 16 MB
5128 RAM, and want to reserve 4 MB from use by Linux,
5129 you can do this by adding "mem=12M" to the value of
5130 the "bootargs" variable. However, now you must make
5131 sure that the initrd image is placed in the first
5132 12 MB as well - this can be done with
5134 setenv initrd_high 00c00000
5136 If you set initrd_high to 0xFFFFFFFF, this is an
5137 indication to U-Boot that all addresses are legal
5138 for the Linux kernel, including addresses in flash
5139 memory. In this case U-Boot will NOT COPY the
5140 ramdisk at all. This may be useful to reduce the
5141 boot time on your system, but requires that this
5142 feature is supported by your Linux kernel.
5144 ipaddr - IP address; needed for tftpboot command
5146 loadaddr - Default load address for commands like "bootp",
5147 "rarpboot", "tftpboot", "loadb" or "diskboot"
5149 loads_echo - see CONFIG_LOADS_ECHO
5151 serverip - TFTP server IP address; needed for tftpboot command
5153 bootretry - see CONFIG_BOOT_RETRY_TIME
5155 bootdelaykey - see CONFIG_AUTOBOOT_DELAY_STR
5157 bootstopkey - see CONFIG_AUTOBOOT_STOP_STR
5159 ethprime - controls which interface is used first.
5161 ethact - controls which interface is currently active.
5162 For example you can do the following
5164 => setenv ethact FEC
5165 => ping 192.168.0.1 # traffic sent on FEC
5166 => setenv ethact SCC
5167 => ping 10.0.0.1 # traffic sent on SCC
5169 ethrotate - When set to "no" U-Boot does not go through all
5170 available network interfaces.
5171 It just stays at the currently selected interface.
5173 netretry - When set to "no" each network operation will
5174 either succeed or fail without retrying.
5175 When set to "once" the network operation will
5176 fail when all the available network interfaces
5177 are tried once without success.
5178 Useful on scripts which control the retry operation
5181 npe_ucode - set load address for the NPE microcode
5183 silent_linux - If set then Linux will be told to boot silently, by
5184 changing the console to be empty. If "yes" it will be
5185 made silent. If "no" it will not be made silent. If
5186 unset, then it will be made silent if the U-Boot console
5189 tftpsrcp - If this is set, the value is used for TFTP's
5192 tftpdstp - If this is set, the value is used for TFTP's UDP
5193 destination port instead of the Well Know Port 69.
5195 tftpblocksize - Block size to use for TFTP transfers; if not set,
5196 we use the TFTP server's default block size
5198 tftptimeout - Retransmission timeout for TFTP packets (in milli-
5199 seconds, minimum value is 1000 = 1 second). Defines
5200 when a packet is considered to be lost so it has to
5201 be retransmitted. The default is 5000 = 5 seconds.
5202 Lowering this value may make downloads succeed
5203 faster in networks with high packet loss rates or
5204 with unreliable TFTP servers.
5206 tftptimeoutcountmax - maximum count of TFTP timeouts (no
5207 unit, minimum value = 0). Defines how many timeouts
5208 can happen during a single file transfer before that
5209 transfer is aborted. The default is 10, and 0 means
5210 'no timeouts allowed'. Increasing this value may help
5211 downloads succeed with high packet loss rates, or with
5212 unreliable TFTP servers or client hardware.
5214 vlan - When set to a value < 4095 the traffic over
5215 Ethernet is encapsulated/received over 802.1q
5218 bootpretryperiod - Period during which BOOTP/DHCP sends retries.
5219 Unsigned value, in milliseconds. If not set, the period will
5220 be either the default (28000), or a value based on
5221 CONFIG_NET_RETRY_COUNT, if defined. This value has
5222 precedence over the valu based on CONFIG_NET_RETRY_COUNT.
5224 The following image location variables contain the location of images
5225 used in booting. The "Image" column gives the role of the image and is
5226 not an environment variable name. The other columns are environment
5227 variable names. "File Name" gives the name of the file on a TFTP
5228 server, "RAM Address" gives the location in RAM the image will be
5229 loaded to, and "Flash Location" gives the image's address in NOR
5230 flash or offset in NAND flash.
5232 *Note* - these variables don't have to be defined for all boards, some
5233 boards currently use other variables for these purposes, and some
5234 boards use these variables for other purposes.
5236 Image File Name RAM Address Flash Location
5237 ----- --------- ----------- --------------
5238 u-boot u-boot u-boot_addr_r u-boot_addr
5239 Linux kernel bootfile kernel_addr_r kernel_addr
5240 device tree blob fdtfile fdt_addr_r fdt_addr
5241 ramdisk ramdiskfile ramdisk_addr_r ramdisk_addr
5243 The following environment variables may be used and automatically
5244 updated by the network boot commands ("bootp" and "rarpboot"),
5245 depending the information provided by your boot server:
5247 bootfile - see above
5248 dnsip - IP address of your Domain Name Server
5249 dnsip2 - IP address of your secondary Domain Name Server
5250 gatewayip - IP address of the Gateway (Router) to use
5251 hostname - Target hostname
5253 netmask - Subnet Mask
5254 rootpath - Pathname of the root filesystem on the NFS server
5255 serverip - see above
5258 There are two special Environment Variables:
5260 serial# - contains hardware identification information such
5261 as type string and/or serial number
5262 ethaddr - Ethernet address
5264 These variables can be set only once (usually during manufacturing of
5265 the board). U-Boot refuses to delete or overwrite these variables
5266 once they have been set once.
5269 Further special Environment Variables:
5271 ver - Contains the U-Boot version string as printed
5272 with the "version" command. This variable is
5273 readonly (see CONFIG_VERSION_VARIABLE).
5276 Please note that changes to some configuration parameters may take
5277 only effect after the next boot (yes, that's just like Windoze :-).
5280 Callback functions for environment variables:
5281 ---------------------------------------------
5283 For some environment variables, the behavior of u-boot needs to change
5284 when their values are changed. This functionality allows functions to
5285 be associated with arbitrary variables. On creation, overwrite, or
5286 deletion, the callback will provide the opportunity for some side
5287 effect to happen or for the change to be rejected.
5289 The callbacks are named and associated with a function using the
5290 U_BOOT_ENV_CALLBACK macro in your board or driver code.
5292 These callbacks are associated with variables in one of two ways. The
5293 static list can be added to by defining CONFIG_ENV_CALLBACK_LIST_STATIC
5294 in the board configuration to a string that defines a list of
5295 associations. The list must be in the following format:
5297 entry = variable_name[:callback_name]
5300 If the callback name is not specified, then the callback is deleted.
5301 Spaces are also allowed anywhere in the list.
5303 Callbacks can also be associated by defining the ".callbacks" variable
5304 with the same list format above. Any association in ".callbacks" will
5305 override any association in the static list. You can define
5306 CONFIG_ENV_CALLBACK_LIST_DEFAULT to a list (string) to define the
5307 ".callbacks" environment variable in the default or embedded environment.
5309 If CONFIG_REGEX is defined, the variable_name above is evaluated as a
5310 regular expression. This allows multiple variables to be connected to
5311 the same callback without explicitly listing them all out.
5314 Command Line Parsing:
5315 =====================
5317 There are two different command line parsers available with U-Boot:
5318 the old "simple" one, and the much more powerful "hush" shell:
5320 Old, simple command line parser:
5321 --------------------------------
5323 - supports environment variables (through setenv / saveenv commands)
5324 - several commands on one line, separated by ';'
5325 - variable substitution using "... ${name} ..." syntax
5326 - special characters ('$', ';') can be escaped by prefixing with '\',
5328 setenv bootcmd bootm \${address}
5329 - You can also escape text by enclosing in single apostrophes, for example:
5330 setenv addip 'setenv bootargs $bootargs ip=$ipaddr:$serverip:$gatewayip:$netmask:$hostname::off'
5335 - similar to Bourne shell, with control structures like
5336 if...then...else...fi, for...do...done; while...do...done,
5337 until...do...done, ...
5338 - supports environment ("global") variables (through setenv / saveenv
5339 commands) and local shell variables (through standard shell syntax
5340 "name=value"); only environment variables can be used with "run"
5346 (1) If a command line (or an environment variable executed by a "run"
5347 command) contains several commands separated by semicolon, and
5348 one of these commands fails, then the remaining commands will be
5351 (2) If you execute several variables with one call to run (i. e.
5352 calling run with a list of variables as arguments), any failing
5353 command will cause "run" to terminate, i. e. the remaining
5354 variables are not executed.
5356 Note for Redundant Ethernet Interfaces:
5357 =======================================
5359 Some boards come with redundant Ethernet interfaces; U-Boot supports
5360 such configurations and is capable of automatic selection of a
5361 "working" interface when needed. MAC assignment works as follows:
5363 Network interfaces are numbered eth0, eth1, eth2, ... Corresponding
5364 MAC addresses can be stored in the environment as "ethaddr" (=>eth0),
5365 "eth1addr" (=>eth1), "eth2addr", ...
5367 If the network interface stores some valid MAC address (for instance
5368 in SROM), this is used as default address if there is NO correspon-
5369 ding setting in the environment; if the corresponding environment
5370 variable is set, this overrides the settings in the card; that means:
5372 o If the SROM has a valid MAC address, and there is no address in the
5373 environment, the SROM's address is used.
5375 o If there is no valid address in the SROM, and a definition in the
5376 environment exists, then the value from the environment variable is
5379 o If both the SROM and the environment contain a MAC address, and
5380 both addresses are the same, this MAC address is used.
5382 o If both the SROM and the environment contain a MAC address, and the
5383 addresses differ, the value from the environment is used and a
5386 o If neither SROM nor the environment contain a MAC address, an error
5387 is raised. If CONFIG_NET_RANDOM_ETHADDR is defined, then in this case
5388 a random, locally-assigned MAC is used.
5390 If Ethernet drivers implement the 'write_hwaddr' function, valid MAC addresses
5391 will be programmed into hardware as part of the initialization process. This
5392 may be skipped by setting the appropriate 'ethmacskip' environment variable.
5393 The naming convention is as follows:
5394 "ethmacskip" (=>eth0), "eth1macskip" (=>eth1) etc.
5399 U-Boot is capable of booting (and performing other auxiliary operations on)
5400 images in two formats:
5402 New uImage format (FIT)
5403 -----------------------
5405 Flexible and powerful format based on Flattened Image Tree -- FIT (similar
5406 to Flattened Device Tree). It allows the use of images with multiple
5407 components (several kernels, ramdisks, etc.), with contents protected by
5408 SHA1, MD5 or CRC32. More details are found in the doc/uImage.FIT directory.
5414 Old image format is based on binary files which can be basically anything,
5415 preceded by a special header; see the definitions in include/image.h for
5416 details; basically, the header defines the following image properties:
5418 * Target Operating System (Provisions for OpenBSD, NetBSD, FreeBSD,
5419 4.4BSD, Linux, SVR4, Esix, Solaris, Irix, SCO, Dell, NCR, VxWorks,
5420 LynxOS, pSOS, QNX, RTEMS, INTEGRITY;
5421 Currently supported: Linux, NetBSD, VxWorks, QNX, RTEMS, LynxOS,
5423 * Target CPU Architecture (Provisions for Alpha, ARM, AVR32, Intel x86,
5424 IA64, MIPS, NDS32, Nios II, PowerPC, IBM S390, SuperH, Sparc, Sparc 64 Bit;
5425 Currently supported: ARM, AVR32, Intel x86, MIPS, NDS32, Nios II, PowerPC).
5426 * Compression Type (uncompressed, gzip, bzip2)
5432 The header is marked by a special Magic Number, and both the header
5433 and the data portions of the image are secured against corruption by
5440 Although U-Boot should support any OS or standalone application
5441 easily, the main focus has always been on Linux during the design of
5444 U-Boot includes many features that so far have been part of some
5445 special "boot loader" code within the Linux kernel. Also, any
5446 "initrd" images to be used are no longer part of one big Linux image;
5447 instead, kernel and "initrd" are separate images. This implementation
5448 serves several purposes:
5450 - the same features can be used for other OS or standalone
5451 applications (for instance: using compressed images to reduce the
5452 Flash memory footprint)
5454 - it becomes much easier to port new Linux kernel versions because
5455 lots of low-level, hardware dependent stuff are done by U-Boot
5457 - the same Linux kernel image can now be used with different "initrd"
5458 images; of course this also means that different kernel images can
5459 be run with the same "initrd". This makes testing easier (you don't
5460 have to build a new "zImage.initrd" Linux image when you just
5461 change a file in your "initrd"). Also, a field-upgrade of the
5462 software is easier now.
5468 Porting Linux to U-Boot based systems:
5469 ---------------------------------------
5471 U-Boot cannot save you from doing all the necessary modifications to
5472 configure the Linux device drivers for use with your target hardware
5473 (no, we don't intend to provide a full virtual machine interface to
5476 But now you can ignore ALL boot loader code (in arch/powerpc/mbxboot).
5478 Just make sure your machine specific header file (for instance
5479 include/asm-ppc/tqm8xx.h) includes the same definition of the Board
5480 Information structure as we define in include/asm-<arch>/u-boot.h,
5481 and make sure that your definition of IMAP_ADDR uses the same value
5482 as your U-Boot configuration in CONFIG_SYS_IMMR.
5484 Note that U-Boot now has a driver model, a unified model for drivers.
5485 If you are adding a new driver, plumb it into driver model. If there
5486 is no uclass available, you are encouraged to create one. See
5490 Configuring the Linux kernel:
5491 -----------------------------
5493 No specific requirements for U-Boot. Make sure you have some root
5494 device (initial ramdisk, NFS) for your target system.
5497 Building a Linux Image:
5498 -----------------------
5500 With U-Boot, "normal" build targets like "zImage" or "bzImage" are
5501 not used. If you use recent kernel source, a new build target
5502 "uImage" will exist which automatically builds an image usable by
5503 U-Boot. Most older kernels also have support for a "pImage" target,
5504 which was introduced for our predecessor project PPCBoot and uses a
5505 100% compatible format.
5509 make TQM850L_defconfig
5514 The "uImage" build target uses a special tool (in 'tools/mkimage') to
5515 encapsulate a compressed Linux kernel image with header information,
5516 CRC32 checksum etc. for use with U-Boot. This is what we are doing:
5518 * build a standard "vmlinux" kernel image (in ELF binary format):
5520 * convert the kernel into a raw binary image:
5522 ${CROSS_COMPILE}-objcopy -O binary \
5523 -R .note -R .comment \
5524 -S vmlinux linux.bin
5526 * compress the binary image:
5530 * package compressed binary image for U-Boot:
5532 mkimage -A ppc -O linux -T kernel -C gzip \
5533 -a 0 -e 0 -n "Linux Kernel Image" \
5534 -d linux.bin.gz uImage
5537 The "mkimage" tool can also be used to create ramdisk images for use
5538 with U-Boot, either separated from the Linux kernel image, or
5539 combined into one file. "mkimage" encapsulates the images with a 64
5540 byte header containing information about target architecture,
5541 operating system, image type, compression method, entry points, time
5542 stamp, CRC32 checksums, etc.
5544 "mkimage" can be called in two ways: to verify existing images and
5545 print the header information, or to build new images.
5547 In the first form (with "-l" option) mkimage lists the information
5548 contained in the header of an existing U-Boot image; this includes
5549 checksum verification:
5551 tools/mkimage -l image
5552 -l ==> list image header information
5554 The second form (with "-d" option) is used to build a U-Boot image
5555 from a "data file" which is used as image payload:
5557 tools/mkimage -A arch -O os -T type -C comp -a addr -e ep \
5558 -n name -d data_file image
5559 -A ==> set architecture to 'arch'
5560 -O ==> set operating system to 'os'
5561 -T ==> set image type to 'type'
5562 -C ==> set compression type 'comp'
5563 -a ==> set load address to 'addr' (hex)
5564 -e ==> set entry point to 'ep' (hex)
5565 -n ==> set image name to 'name'
5566 -d ==> use image data from 'datafile'
5568 Right now, all Linux kernels for PowerPC systems use the same load
5569 address (0x00000000), but the entry point address depends on the
5572 - 2.2.x kernels have the entry point at 0x0000000C,
5573 - 2.3.x and later kernels have the entry point at 0x00000000.
5575 So a typical call to build a U-Boot image would read:
5577 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
5578 > -A ppc -O linux -T kernel -C gzip -a 0 -e 0 \
5579 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz \
5580 > examples/uImage.TQM850L
5581 Image Name: 2.4.4 kernel for TQM850L
5582 Created: Wed Jul 19 02:34:59 2000
5583 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5584 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
5585 Load Address: 0x00000000
5586 Entry Point: 0x00000000
5588 To verify the contents of the image (or check for corruption):
5590 -> tools/mkimage -l examples/uImage.TQM850L
5591 Image Name: 2.4.4 kernel for TQM850L
5592 Created: Wed Jul 19 02:34:59 2000
5593 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5594 Data Size: 335725 Bytes = 327.86 kB = 0.32 MB
5595 Load Address: 0x00000000
5596 Entry Point: 0x00000000
5598 NOTE: for embedded systems where boot time is critical you can trade
5599 speed for memory and install an UNCOMPRESSED image instead: this
5600 needs more space in Flash, but boots much faster since it does not
5601 need to be uncompressed:
5603 -> gunzip /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux.gz
5604 -> tools/mkimage -n '2.4.4 kernel for TQM850L' \
5605 > -A ppc -O linux -T kernel -C none -a 0 -e 0 \
5606 > -d /opt/elsk/ppc_8xx/usr/src/linux-2.4.4/arch/powerpc/coffboot/vmlinux \
5607 > examples/uImage.TQM850L-uncompressed
5608 Image Name: 2.4.4 kernel for TQM850L
5609 Created: Wed Jul 19 02:34:59 2000
5610 Image Type: PowerPC Linux Kernel Image (uncompressed)
5611 Data Size: 792160 Bytes = 773.59 kB = 0.76 MB
5612 Load Address: 0x00000000
5613 Entry Point: 0x00000000
5616 Similar you can build U-Boot images from a 'ramdisk.image.gz' file
5617 when your kernel is intended to use an initial ramdisk:
5619 -> tools/mkimage -n 'Simple Ramdisk Image' \
5620 > -A ppc -O linux -T ramdisk -C gzip \
5621 > -d /LinuxPPC/images/SIMPLE-ramdisk.image.gz examples/simple-initrd
5622 Image Name: Simple Ramdisk Image
5623 Created: Wed Jan 12 14:01:50 2000
5624 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
5625 Data Size: 566530 Bytes = 553.25 kB = 0.54 MB
5626 Load Address: 0x00000000
5627 Entry Point: 0x00000000
5629 The "dumpimage" is a tool to disassemble images built by mkimage. Its "-i"
5630 option performs the converse operation of the mkimage's second form (the "-d"
5631 option). Given an image built by mkimage, the dumpimage extracts a "data file"
5634 tools/dumpimage -i image -T type -p position data_file
5635 -i ==> extract from the 'image' a specific 'data_file'
5636 -T ==> set image type to 'type'
5637 -p ==> 'position' (starting at 0) of the 'data_file' inside the 'image'
5640 Installing a Linux Image:
5641 -------------------------
5643 To downloading a U-Boot image over the serial (console) interface,
5644 you must convert the image to S-Record format:
5646 objcopy -I binary -O srec examples/image examples/image.srec
5648 The 'objcopy' does not understand the information in the U-Boot
5649 image header, so the resulting S-Record file will be relative to
5650 address 0x00000000. To load it to a given address, you need to
5651 specify the target address as 'offset' parameter with the 'loads'
5654 Example: install the image to address 0x40100000 (which on the
5655 TQM8xxL is in the first Flash bank):
5657 => erase 40100000 401FFFFF
5663 ## Ready for S-Record download ...
5664 ~>examples/image.srec
5665 1 2 3 4 5 6 7 8 9 10 11 12 13 ...
5667 15989 15990 15991 15992
5668 [file transfer complete]
5670 ## Start Addr = 0x00000000
5673 You can check the success of the download using the 'iminfo' command;
5674 this includes a checksum verification so you can be sure no data
5675 corruption happened:
5679 ## Checking Image at 40100000 ...
5680 Image Name: 2.2.13 for initrd on TQM850L
5681 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5682 Data Size: 335725 Bytes = 327 kB = 0 MB
5683 Load Address: 00000000
5684 Entry Point: 0000000c
5685 Verifying Checksum ... OK
5691 The "bootm" command is used to boot an application that is stored in
5692 memory (RAM or Flash). In case of a Linux kernel image, the contents
5693 of the "bootargs" environment variable is passed to the kernel as
5694 parameters. You can check and modify this variable using the
5695 "printenv" and "setenv" commands:
5698 => printenv bootargs
5699 bootargs=root=/dev/ram
5701 => setenv bootargs root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
5703 => printenv bootargs
5704 bootargs=root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
5707 ## Booting Linux kernel at 40020000 ...
5708 Image Name: 2.2.13 for NFS on TQM850L
5709 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5710 Data Size: 381681 Bytes = 372 kB = 0 MB
5711 Load Address: 00000000
5712 Entry Point: 0000000c
5713 Verifying Checksum ... OK
5714 Uncompressing Kernel Image ... OK
5715 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:35:17 MEST 2000
5716 Boot arguments: root=/dev/nfs rw nfsroot=10.0.0.2:/LinuxPPC nfsaddrs=10.0.0.99:10.0.0.2
5717 time_init: decrementer frequency = 187500000/60
5718 Calibrating delay loop... 49.77 BogoMIPS
5719 Memory: 15208k available (700k kernel code, 444k data, 32k init) [c0000000,c1000000]
5722 If you want to boot a Linux kernel with initial RAM disk, you pass
5723 the memory addresses of both the kernel and the initrd image (PPBCOOT
5724 format!) to the "bootm" command:
5726 => imi 40100000 40200000
5728 ## Checking Image at 40100000 ...
5729 Image Name: 2.2.13 for initrd on TQM850L
5730 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5731 Data Size: 335725 Bytes = 327 kB = 0 MB
5732 Load Address: 00000000
5733 Entry Point: 0000000c
5734 Verifying Checksum ... OK
5736 ## Checking Image at 40200000 ...
5737 Image Name: Simple Ramdisk Image
5738 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
5739 Data Size: 566530 Bytes = 553 kB = 0 MB
5740 Load Address: 00000000
5741 Entry Point: 00000000
5742 Verifying Checksum ... OK
5744 => bootm 40100000 40200000
5745 ## Booting Linux kernel at 40100000 ...
5746 Image Name: 2.2.13 for initrd on TQM850L
5747 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5748 Data Size: 335725 Bytes = 327 kB = 0 MB
5749 Load Address: 00000000
5750 Entry Point: 0000000c
5751 Verifying Checksum ... OK
5752 Uncompressing Kernel Image ... OK
5753 ## Loading RAMDisk Image at 40200000 ...
5754 Image Name: Simple Ramdisk Image
5755 Image Type: PowerPC Linux RAMDisk Image (gzip compressed)
5756 Data Size: 566530 Bytes = 553 kB = 0 MB
5757 Load Address: 00000000
5758 Entry Point: 00000000
5759 Verifying Checksum ... OK
5760 Loading Ramdisk ... OK
5761 Linux version 2.2.13 (wd@denx.local.net) (gcc version 2.95.2 19991024 (release)) #1 Wed Jul 19 02:32:08 MEST 2000
5762 Boot arguments: root=/dev/ram
5763 time_init: decrementer frequency = 187500000/60
5764 Calibrating delay loop... 49.77 BogoMIPS
5766 RAMDISK: Compressed image found at block 0
5767 VFS: Mounted root (ext2 filesystem).
5771 Boot Linux and pass a flat device tree:
5774 First, U-Boot must be compiled with the appropriate defines. See the section
5775 titled "Linux Kernel Interface" above for a more in depth explanation. The
5776 following is an example of how to start a kernel and pass an updated
5782 oft=oftrees/mpc8540ads.dtb
5783 => tftp $oftaddr $oft
5784 Speed: 1000, full duplex
5786 TFTP from server 192.168.1.1; our IP address is 192.168.1.101
5787 Filename 'oftrees/mpc8540ads.dtb'.
5788 Load address: 0x300000
5791 Bytes transferred = 4106 (100a hex)
5792 => tftp $loadaddr $bootfile
5793 Speed: 1000, full duplex
5795 TFTP from server 192.168.1.1; our IP address is 192.168.1.2
5797 Load address: 0x200000
5798 Loading:############
5800 Bytes transferred = 1029407 (fb51f hex)
5805 => bootm $loadaddr - $oftaddr
5806 ## Booting image at 00200000 ...
5807 Image Name: Linux-2.6.17-dirty
5808 Image Type: PowerPC Linux Kernel Image (gzip compressed)
5809 Data Size: 1029343 Bytes = 1005.2 kB
5810 Load Address: 00000000
5811 Entry Point: 00000000
5812 Verifying Checksum ... OK
5813 Uncompressing Kernel Image ... OK
5814 Booting using flat device tree at 0x300000
5815 Using MPC85xx ADS machine description
5816 Memory CAM mapping: CAM0=256Mb, CAM1=256Mb, CAM2=0Mb residual: 0Mb
5820 More About U-Boot Image Types:
5821 ------------------------------
5823 U-Boot supports the following image types:
5825 "Standalone Programs" are directly runnable in the environment
5826 provided by U-Boot; it is expected that (if they behave
5827 well) you can continue to work in U-Boot after return from
5828 the Standalone Program.
5829 "OS Kernel Images" are usually images of some Embedded OS which
5830 will take over control completely. Usually these programs
5831 will install their own set of exception handlers, device
5832 drivers, set up the MMU, etc. - this means, that you cannot
5833 expect to re-enter U-Boot except by resetting the CPU.
5834 "RAMDisk Images" are more or less just data blocks, and their
5835 parameters (address, size) are passed to an OS kernel that is
5837 "Multi-File Images" contain several images, typically an OS
5838 (Linux) kernel image and one or more data images like
5839 RAMDisks. This construct is useful for instance when you want
5840 to boot over the network using BOOTP etc., where the boot
5841 server provides just a single image file, but you want to get
5842 for instance an OS kernel and a RAMDisk image.
5844 "Multi-File Images" start with a list of image sizes, each
5845 image size (in bytes) specified by an "uint32_t" in network
5846 byte order. This list is terminated by an "(uint32_t)0".
5847 Immediately after the terminating 0 follow the images, one by
5848 one, all aligned on "uint32_t" boundaries (size rounded up to
5849 a multiple of 4 bytes).
5851 "Firmware Images" are binary images containing firmware (like
5852 U-Boot or FPGA images) which usually will be programmed to
5855 "Script files" are command sequences that will be executed by
5856 U-Boot's command interpreter; this feature is especially
5857 useful when you configure U-Boot to use a real shell (hush)
5858 as command interpreter.
5860 Booting the Linux zImage:
5861 -------------------------
5863 On some platforms, it's possible to boot Linux zImage. This is done
5864 using the "bootz" command. The syntax of "bootz" command is the same
5865 as the syntax of "bootm" command.
5867 Note, defining the CONFIG_SUPPORT_RAW_INITRD allows user to supply
5868 kernel with raw initrd images. The syntax is slightly different, the
5869 address of the initrd must be augmented by it's size, in the following
5870 format: "<initrd addres>:<initrd size>".
5876 One of the features of U-Boot is that you can dynamically load and
5877 run "standalone" applications, which can use some resources of
5878 U-Boot like console I/O functions or interrupt services.
5880 Two simple examples are included with the sources:
5885 'examples/hello_world.c' contains a small "Hello World" Demo
5886 application; it is automatically compiled when you build U-Boot.
5887 It's configured to run at address 0x00040004, so you can play with it
5891 ## Ready for S-Record download ...
5892 ~>examples/hello_world.srec
5893 1 2 3 4 5 6 7 8 9 10 11 ...
5894 [file transfer complete]
5896 ## Start Addr = 0x00040004
5898 => go 40004 Hello World! This is a test.
5899 ## Starting application at 0x00040004 ...
5910 Hit any key to exit ...
5912 ## Application terminated, rc = 0x0
5914 Another example, which demonstrates how to register a CPM interrupt
5915 handler with the U-Boot code, can be found in 'examples/timer.c'.
5916 Here, a CPM timer is set up to generate an interrupt every second.
5917 The interrupt service routine is trivial, just printing a '.'
5918 character, but this is just a demo program. The application can be
5919 controlled by the following keys:
5921 ? - print current values og the CPM Timer registers
5922 b - enable interrupts and start timer
5923 e - stop timer and disable interrupts
5924 q - quit application
5927 ## Ready for S-Record download ...
5928 ~>examples/timer.srec
5929 1 2 3 4 5 6 7 8 9 10 11 ...
5930 [file transfer complete]
5932 ## Start Addr = 0x00040004
5935 ## Starting application at 0x00040004 ...
5938 tgcr @ 0xfff00980, tmr @ 0xfff00990, trr @ 0xfff00994, tcr @ 0xfff00998, tcn @ 0xfff0099c, ter @ 0xfff009b0
5941 [q, b, e, ?] Set interval 1000000 us
5944 [q, b, e, ?] ........
5945 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0xef6, ter=0x0
5948 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x2ad4, ter=0x0
5951 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x1efc, ter=0x0
5954 tgcr=0x1, tmr=0xff1c, trr=0x3d09, tcr=0x0, tcn=0x169d, ter=0x0
5956 [q, b, e, ?] ...Stopping timer
5958 [q, b, e, ?] ## Application terminated, rc = 0x0
5964 Over time, many people have reported problems when trying to use the
5965 "minicom" terminal emulation program for serial download. I (wd)
5966 consider minicom to be broken, and recommend not to use it. Under
5967 Unix, I recommend to use C-Kermit for general purpose use (and
5968 especially for kermit binary protocol download ("loadb" command), and
5969 use "cu" for S-Record download ("loads" command). See
5970 http://www.denx.de/wiki/view/DULG/SystemSetup#Section_4.3.
5971 for help with kermit.
5974 Nevertheless, if you absolutely want to use it try adding this
5975 configuration to your "File transfer protocols" section:
5977 Name Program Name U/D FullScr IO-Red. Multi
5978 X kermit /usr/bin/kermit -i -l %l -s Y U Y N N
5979 Y kermit /usr/bin/kermit -i -l %l -r N D Y N N
5985 Starting at version 0.9.2, U-Boot supports NetBSD both as host
5986 (build U-Boot) and target system (boots NetBSD/mpc8xx).
5988 Building requires a cross environment; it is known to work on
5989 NetBSD/i386 with the cross-powerpc-netbsd-1.3 package (you will also
5990 need gmake since the Makefiles are not compatible with BSD make).
5991 Note that the cross-powerpc package does not install include files;
5992 attempting to build U-Boot will fail because <machine/ansi.h> is
5993 missing. This file has to be installed and patched manually:
5995 # cd /usr/pkg/cross/powerpc-netbsd/include
5997 # ln -s powerpc machine
5998 # cp /usr/src/sys/arch/powerpc/include/ansi.h powerpc/ansi.h
5999 # ${EDIT} powerpc/ansi.h ## must remove __va_list, _BSD_VA_LIST
6001 Native builds *don't* work due to incompatibilities between native
6002 and U-Boot include files.
6004 Booting assumes that (the first part of) the image booted is a
6005 stage-2 loader which in turn loads and then invokes the kernel
6006 proper. Loader sources will eventually appear in the NetBSD source
6007 tree (probably in sys/arc/mpc8xx/stand/u-boot_stage2/); in the
6008 meantime, see ftp://ftp.denx.de/pub/u-boot/ppcboot_stage2.tar.gz
6011 Implementation Internals:
6012 =========================
6014 The following is not intended to be a complete description of every
6015 implementation detail. However, it should help to understand the
6016 inner workings of U-Boot and make it easier to port it to custom
6020 Initial Stack, Global Data:
6021 ---------------------------
6023 The implementation of U-Boot is complicated by the fact that U-Boot
6024 starts running out of ROM (flash memory), usually without access to
6025 system RAM (because the memory controller is not initialized yet).
6026 This means that we don't have writable Data or BSS segments, and BSS
6027 is not initialized as zero. To be able to get a C environment working
6028 at all, we have to allocate at least a minimal stack. Implementation
6029 options for this are defined and restricted by the CPU used: Some CPU
6030 models provide on-chip memory (like the IMMR area on MPC8xx and
6031 MPC826x processors), on others (parts of) the data cache can be
6032 locked as (mis-) used as memory, etc.
6034 Chris Hallinan posted a good summary of these issues to the
6035 U-Boot mailing list:
6037 Subject: RE: [U-Boot-Users] RE: More On Memory Bank x (nothingness)?
6038 From: "Chris Hallinan" <clh@net1plus.com>
6039 Date: Mon, 10 Feb 2003 16:43:46 -0500 (22:43 MET)
6042 Correct me if I'm wrong, folks, but the way I understand it
6043 is this: Using DCACHE as initial RAM for Stack, etc, does not
6044 require any physical RAM backing up the cache. The cleverness
6045 is that the cache is being used as a temporary supply of
6046 necessary storage before the SDRAM controller is setup. It's
6047 beyond the scope of this list to explain the details, but you
6048 can see how this works by studying the cache architecture and
6049 operation in the architecture and processor-specific manuals.
6051 OCM is On Chip Memory, which I believe the 405GP has 4K. It
6052 is another option for the system designer to use as an
6053 initial stack/RAM area prior to SDRAM being available. Either
6054 option should work for you. Using CS 4 should be fine if your
6055 board designers haven't used it for something that would
6056 cause you grief during the initial boot! It is frequently not
6059 CONFIG_SYS_INIT_RAM_ADDR should be somewhere that won't interfere
6060 with your processor/board/system design. The default value
6061 you will find in any recent u-boot distribution in
6062 walnut.h should work for you. I'd set it to a value larger
6063 than your SDRAM module. If you have a 64MB SDRAM module, set
6064 it above 400_0000. Just make sure your board has no resources
6065 that are supposed to respond to that address! That code in
6066 start.S has been around a while and should work as is when
6067 you get the config right.
6072 It is essential to remember this, since it has some impact on the C
6073 code for the initialization procedures:
6075 * Initialized global data (data segment) is read-only. Do not attempt
6078 * Do not use any uninitialized global data (or implicitly initialized
6079 as zero data - BSS segment) at all - this is undefined, initiali-
6080 zation is performed later (when relocating to RAM).
6082 * Stack space is very limited. Avoid big data buffers or things like
6085 Having only the stack as writable memory limits means we cannot use
6086 normal global data to share information between the code. But it
6087 turned out that the implementation of U-Boot can be greatly
6088 simplified by making a global data structure (gd_t) available to all
6089 functions. We could pass a pointer to this data as argument to _all_
6090 functions, but this would bloat the code. Instead we use a feature of
6091 the GCC compiler (Global Register Variables) to share the data: we
6092 place a pointer (gd) to the global data into a register which we
6093 reserve for this purpose.
6095 When choosing a register for such a purpose we are restricted by the
6096 relevant (E)ABI specifications for the current architecture, and by
6097 GCC's implementation.
6099 For PowerPC, the following registers have specific use:
6101 R2: reserved for system use
6102 R3-R4: parameter passing and return values
6103 R5-R10: parameter passing
6104 R13: small data area pointer
6108 (U-Boot also uses R12 as internal GOT pointer. r12
6109 is a volatile register so r12 needs to be reset when
6110 going back and forth between asm and C)
6112 ==> U-Boot will use R2 to hold a pointer to the global data
6114 Note: on PPC, we could use a static initializer (since the
6115 address of the global data structure is known at compile time),
6116 but it turned out that reserving a register results in somewhat
6117 smaller code - although the code savings are not that big (on
6118 average for all boards 752 bytes for the whole U-Boot image,
6119 624 text + 127 data).
6121 On Blackfin, the normal C ABI (except for P3) is followed as documented here:
6122 http://docs.blackfin.uclinux.org/doku.php?id=application_binary_interface
6124 ==> U-Boot will use P3 to hold a pointer to the global data
6126 On ARM, the following registers are used:
6128 R0: function argument word/integer result
6129 R1-R3: function argument word
6130 R9: platform specific
6131 R10: stack limit (used only if stack checking is enabled)
6132 R11: argument (frame) pointer
6133 R12: temporary workspace
6136 R15: program counter
6138 ==> U-Boot will use R9 to hold a pointer to the global data
6140 Note: on ARM, only R_ARM_RELATIVE relocations are supported.
6142 On Nios II, the ABI is documented here:
6143 http://www.altera.com/literature/hb/nios2/n2cpu_nii51016.pdf
6145 ==> U-Boot will use gp to hold a pointer to the global data
6147 Note: on Nios II, we give "-G0" option to gcc and don't use gp
6148 to access small data sections, so gp is free.
6150 On NDS32, the following registers are used:
6152 R0-R1: argument/return
6154 R15: temporary register for assembler
6155 R16: trampoline register
6156 R28: frame pointer (FP)
6157 R29: global pointer (GP)
6158 R30: link register (LP)
6159 R31: stack pointer (SP)
6160 PC: program counter (PC)
6162 ==> U-Boot will use R10 to hold a pointer to the global data
6164 NOTE: DECLARE_GLOBAL_DATA_PTR must be used with file-global scope,
6165 or current versions of GCC may "optimize" the code too much.
6170 U-Boot runs in system state and uses physical addresses, i.e. the
6171 MMU is not used either for address mapping nor for memory protection.
6173 The available memory is mapped to fixed addresses using the memory
6174 controller. In this process, a contiguous block is formed for each
6175 memory type (Flash, SDRAM, SRAM), even when it consists of several
6176 physical memory banks.
6178 U-Boot is installed in the first 128 kB of the first Flash bank (on
6179 TQM8xxL modules this is the range 0x40000000 ... 0x4001FFFF). After
6180 booting and sizing and initializing DRAM, the code relocates itself
6181 to the upper end of DRAM. Immediately below the U-Boot code some
6182 memory is reserved for use by malloc() [see CONFIG_SYS_MALLOC_LEN
6183 configuration setting]. Below that, a structure with global Board
6184 Info data is placed, followed by the stack (growing downward).
6186 Additionally, some exception handler code is copied to the low 8 kB
6187 of DRAM (0x00000000 ... 0x00001FFF).
6189 So a typical memory configuration with 16 MB of DRAM could look like
6192 0x0000 0000 Exception Vector code
6195 0x0000 2000 Free for Application Use
6201 0x00FB FF20 Monitor Stack (Growing downward)
6202 0x00FB FFAC Board Info Data and permanent copy of global data
6203 0x00FC 0000 Malloc Arena
6206 0x00FE 0000 RAM Copy of Monitor Code
6207 ... eventually: LCD or video framebuffer
6208 ... eventually: pRAM (Protected RAM - unchanged by reset)
6209 0x00FF FFFF [End of RAM]
6212 System Initialization:
6213 ----------------------
6215 In the reset configuration, U-Boot starts at the reset entry point
6216 (on most PowerPC systems at address 0x00000100). Because of the reset
6217 configuration for CS0# this is a mirror of the on board Flash memory.
6218 To be able to re-map memory U-Boot then jumps to its link address.
6219 To be able to implement the initialization code in C, a (small!)
6220 initial stack is set up in the internal Dual Ported RAM (in case CPUs
6221 which provide such a feature like MPC8xx or MPC8260), or in a locked
6222 part of the data cache. After that, U-Boot initializes the CPU core,
6223 the caches and the SIU.
6225 Next, all (potentially) available memory banks are mapped using a
6226 preliminary mapping. For example, we put them on 512 MB boundaries
6227 (multiples of 0x20000000: SDRAM on 0x00000000 and 0x20000000, Flash
6228 on 0x40000000 and 0x60000000, SRAM on 0x80000000). Then UPM A is
6229 programmed for SDRAM access. Using the temporary configuration, a
6230 simple memory test is run that determines the size of the SDRAM
6233 When there is more than one SDRAM bank, and the banks are of
6234 different size, the largest is mapped first. For equal size, the first
6235 bank (CS2#) is mapped first. The first mapping is always for address
6236 0x00000000, with any additional banks following immediately to create
6237 contiguous memory starting from 0.
6239 Then, the monitor installs itself at the upper end of the SDRAM area
6240 and allocates memory for use by malloc() and for the global Board
6241 Info data; also, the exception vector code is copied to the low RAM
6242 pages, and the final stack is set up.
6244 Only after this relocation will you have a "normal" C environment;
6245 until that you are restricted in several ways, mostly because you are
6246 running from ROM, and because the code will have to be relocated to a
6250 U-Boot Porting Guide:
6251 ----------------------
6253 [Based on messages by Jerry Van Baren in the U-Boot-Users mailing
6257 int main(int argc, char *argv[])
6259 sighandler_t no_more_time;
6261 signal(SIGALRM, no_more_time);
6262 alarm(PROJECT_DEADLINE - toSec (3 * WEEK));
6264 if (available_money > available_manpower) {
6265 Pay consultant to port U-Boot;
6269 Download latest U-Boot source;
6271 Subscribe to u-boot mailing list;
6274 email("Hi, I am new to U-Boot, how do I get started?");
6277 Read the README file in the top level directory;
6278 Read http://www.denx.de/twiki/bin/view/DULG/Manual;
6279 Read applicable doc/*.README;
6280 Read the source, Luke;
6281 /* find . -name "*.[chS]" | xargs grep -i <keyword> */
6284 if (available_money > toLocalCurrency ($2500))
6287 Add a lot of aggravation and time;
6289 if (a similar board exists) { /* hopefully... */
6290 cp -a board/<similar> board/<myboard>
6291 cp include/configs/<similar>.h include/configs/<myboard>.h
6293 Create your own board support subdirectory;
6294 Create your own board include/configs/<myboard>.h file;
6296 Edit new board/<myboard> files
6297 Edit new include/configs/<myboard>.h
6302 Add / modify source code;
6306 email("Hi, I am having problems...");
6308 Send patch file to the U-Boot email list;
6309 if (reasonable critiques)
6310 Incorporate improvements from email list code review;
6312 Defend code as written;
6318 void no_more_time (int sig)
6327 All contributions to U-Boot should conform to the Linux kernel
6328 coding style; see the file "Documentation/CodingStyle" and the script
6329 "scripts/Lindent" in your Linux kernel source directory.
6331 Source files originating from a different project (for example the
6332 MTD subsystem) are generally exempt from these guidelines and are not
6333 reformatted to ease subsequent migration to newer versions of those
6336 Please note that U-Boot is implemented in C (and to some small parts in
6337 Assembler); no C++ is used, so please do not use C++ style comments (//)
6340 Please also stick to the following formatting rules:
6341 - remove any trailing white space
6342 - use TAB characters for indentation and vertical alignment, not spaces
6343 - make sure NOT to use DOS '\r\n' line feeds
6344 - do not add more than 2 consecutive empty lines to source files
6345 - do not add trailing empty lines to source files
6347 Submissions which do not conform to the standards may be returned
6348 with a request to reformat the changes.
6354 Since the number of patches for U-Boot is growing, we need to
6355 establish some rules. Submissions which do not conform to these rules
6356 may be rejected, even when they contain important and valuable stuff.
6358 Please see http://www.denx.de/wiki/U-Boot/Patches for details.
6360 Patches shall be sent to the u-boot mailing list <u-boot@lists.denx.de>;
6361 see http://lists.denx.de/mailman/listinfo/u-boot
6363 When you send a patch, please include the following information with
6366 * For bug fixes: a description of the bug and how your patch fixes
6367 this bug. Please try to include a way of demonstrating that the
6368 patch actually fixes something.
6370 * For new features: a description of the feature and your
6373 * A CHANGELOG entry as plaintext (separate from the patch)
6375 * For major contributions, add a MAINTAINERS file with your
6376 information and associated file and directory references.
6378 * When you add support for a new board, don't forget to add a
6379 maintainer e-mail address to the boards.cfg file, too.
6381 * If your patch adds new configuration options, don't forget to
6382 document these in the README file.
6384 * The patch itself. If you are using git (which is *strongly*
6385 recommended) you can easily generate the patch using the
6386 "git format-patch". If you then use "git send-email" to send it to
6387 the U-Boot mailing list, you will avoid most of the common problems
6388 with some other mail clients.
6390 If you cannot use git, use "diff -purN OLD NEW". If your version of
6391 diff does not support these options, then get the latest version of
6394 The current directory when running this command shall be the parent
6395 directory of the U-Boot source tree (i. e. please make sure that
6396 your patch includes sufficient directory information for the
6399 We prefer patches as plain text. MIME attachments are discouraged,
6400 and compressed attachments must not be used.
6402 * If one logical set of modifications affects or creates several
6403 files, all these changes shall be submitted in a SINGLE patch file.
6405 * Changesets that contain different, unrelated modifications shall be
6406 submitted as SEPARATE patches, one patch per changeset.
6411 * Before sending the patch, run the buildman script on your patched
6412 source tree and make sure that no errors or warnings are reported
6413 for any of the boards.
6415 * Keep your modifications to the necessary minimum: A patch
6416 containing several unrelated changes or arbitrary reformats will be
6417 returned with a request to re-formatting / split it.
6419 * If you modify existing code, make sure that your new code does not
6420 add to the memory footprint of the code ;-) Small is beautiful!
6421 When adding new features, these should compile conditionally only
6422 (using #ifdef), and the resulting code with the new feature
6423 disabled must not need more memory than the old code without your
6426 * Remember that there is a size limit of 100 kB per message on the
6427 u-boot mailing list. Bigger patches will be moderated. If they are
6428 reasonable and not too big, they will be acknowledged. But patches
6429 bigger than the size limit should be avoided.