5 Each CPU has a "base" scheduling domain (struct sched_domain). The domain
6 hierarchy is built from these base domains via the ->parent pointer. ->parent
7 MUST be NULL terminated, and domain structures should be per-CPU as they are
10 Each scheduling domain spans a number of CPUs (stored in the ->span field).
11 A domain's span MUST be a superset of it child's span (this restriction could
12 be relaxed if the need arises), and a base domain for CPU i MUST span at least
13 i. The top domain for each CPU will generally span all CPUs in the system
14 although strictly it doesn't have to, but this could lead to a case where some
15 CPUs will never be given tasks to run unless the CPUs allowed mask is
16 explicitly set. A sched domain's span means "balance process load among these
19 Each scheduling domain must have one or more CPU groups (struct sched_group)
20 which are organised as a circular one way linked list from the ->groups
21 pointer. The union of cpumasks of these groups MUST be the same as the
22 domain's span. The group pointed to by the ->groups pointer MUST contain the CPU
23 to which the domain belongs. Groups may be shared among CPUs as they contain
24 read only data after they have been set up. The intersection of cpumasks from
25 any two of these groups may be non empty. If this is the case the SD_OVERLAP
26 flag is set on the corresponding scheduling domain and its groups may not be
29 Balancing within a sched domain occurs between groups. That is, each group
30 is treated as one entity. The load of a group is defined as the sum of the
31 load of each of its member CPUs, and only when the load of a group becomes
32 out of balance are tasks moved between groups.
34 In kernel/sched/core.c, trigger_load_balance() is run periodically on each CPU
35 through scheduler_tick(). It raises a softirq after the next regularly scheduled
36 rebalancing event for the current runqueue has arrived. The actual load
37 balancing workhorse, run_rebalance_domains()->rebalance_domains(), is then run
38 in softirq context (SCHED_SOFTIRQ).
40 The latter function takes two arguments: the current CPU and whether it was idle
41 at the time the scheduler_tick() happened and iterates over all sched domains
42 our CPU is on, starting from its base domain and going up the ->parent chain.
43 While doing that, it checks to see if the current domain has exhausted its
44 rebalance interval. If so, it runs load_balance() on that domain. It then checks
45 the parent sched_domain (if it exists), and the parent of the parent and so
48 Initially, load_balance() finds the busiest group in the current sched domain.
49 If it succeeds, it looks for the busiest runqueue of all the CPUs' runqueues in
50 that group. If it manages to find such a runqueue, it locks both our initial
51 CPU's runqueue and the newly found busiest one and starts moving tasks from it
52 to our runqueue. The exact number of tasks amounts to an imbalance previously
53 computed while iterating over this sched domain's groups.
55 Implementing sched domains
56 ==========================
58 The "base" domain will "span" the first level of the hierarchy. In the case
59 of SMT, you'll span all siblings of the physical CPU, with each group being
62 In SMP, the parent of the base domain will span all physical CPUs in the
63 node. Each group being a single physical CPU. Then with NUMA, the parent
64 of the SMP domain will span the entire machine, with each group having the
65 cpumask of a node. Or, you could do multi-level NUMA or Opteron, for example,
66 might have just one domain covering its one NUMA level.
68 The implementor should read comments in include/linux/sched/sd_flags.h:
69 SD_* to get an idea of the specifics and what to tune for the SD flags
72 Architectures may override the generic domain builder and the default SD flags
73 for a given topology level by creating a sched_domain_topology_level array and
74 calling set_sched_topology() with this array as the parameter.
76 The sched-domains debugging infrastructure can be enabled by enabling
77 CONFIG_SCHED_DEBUG and adding 'sched_verbose' to your cmdline. If you
78 forgot to tweak your cmdline, you can also flip the
79 /sys/kernel/debug/sched/verbose knob. This enables an error checking parse of
80 the sched domains which should catch most possible errors (described above). It
81 also prints out the domain structure in a visual format.