2 * PTP hardware clock infrastructure for Linux
4 This patch set introduces support for IEEE 1588 PTP clocks in
5 Linux. Together with the SO_TIMESTAMPING socket options, this
6 presents a standardized method for developing PTP user space
7 programs, synchronizing Linux with external clocks, and using the
8 ancillary features of PTP hardware clocks.
10 A new class driver exports a kernel interface for specific clock
11 drivers and a user space interface. The infrastructure supports a
12 complete set of PTP hardware clock functionality.
14 + Basic clock operations
17 - Shift the clock by a given offset atomically
18 - Adjust clock frequency
20 + Ancillary clock features
21 - One short or periodic alarms, with signal delivery to user program
22 - Time stamp external events
23 - Period output signals configurable from user space
24 - Synchronization of the Linux system time via the PPS subsystem
26 ** PTP hardware clock kernel API
28 A PTP clock driver registers itself with the class driver. The
29 class driver handles all of the dealings with user space. The
30 author of a clock driver need only implement the details of
31 programming the clock hardware. The clock driver notifies the class
32 driver of asynchronous events (alarms and external time stamps) via
33 a simple message passing interface.
35 The class driver supports multiple PTP clock drivers. In normal use
36 cases, only one PTP clock is needed. However, for testing and
37 development, it can be useful to have more than one clock in a
38 single system, in order to allow performance comparisons.
40 ** PTP hardware clock user space API
42 The class driver also creates a character device for each
43 registered clock. User space can use an open file descriptor from
44 the character device as a POSIX clock id and may call
45 clock_gettime, clock_settime, and clock_adjtime. These calls
46 implement the basic clock operations.
48 User space programs may control the clock using standardized
49 ioctls. A program may query, enable, configure, and disable the
50 ancillary clock features. User space can receive time stamped
51 events via blocking read() and poll(). One shot and periodic
52 signals may be configured via the POSIX timer_settime() system
55 ** Writing clock drivers
57 Clock drivers include include/linux/ptp_clock_kernel.h and register
58 themselves by presenting a 'struct ptp_clock_info' to the
59 registration method. Clock drivers must implement all of the
60 functions in the interface. If a clock does not offer a particular
61 ancillary feature, then the driver should just return -EOPNOTSUPP
64 Drivers must ensure that all of the methods in interface are
65 reentrant. Since most hardware implementations treat the time value
66 as a 64 bit integer accessed as two 32 bit registers, drivers
67 should use spin_lock_irqsave/spin_unlock_irqrestore to protect
68 against concurrent access. This locking cannot be accomplished in
69 class driver, since the lock may also be needed by the clock
70 driver's interrupt service routine.
74 + Freescale eTSEC gianfar
75 - 2 Time stamp external triggers, programmable polarity (opt. interrupt)
76 - 2 Alarm registers (optional interrupt)
77 - 3 Periodic signals (optional interrupt)
80 - 6 GPIOs programmable as inputs or outputs
81 - 6 GPIOs with dedicated functions (LED/JTAG/clock) can also be
82 used as general inputs or outputs
83 - GPIO inputs can time stamp external triggers
84 - GPIO outputs can produce periodic signals
88 - Auxiliary Slave/Master Mode Snapshot (optional interrupt)
89 - Target Time (optional interrupt)